AD-A096 973 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR INFORMA-<ETC F/6 12/1
TOPICS IN NONLINEAR FILTERING THEORY.(U)
DEC 80 D L OCONE AFQSR-77-3281
UNCLASSIFIED LIDS-TH=-1058 AFOSR=TR=81-0232

los 2
Bsers




_ UNCLASSLELED

SECURITY CLASSIFICATION OF THIS PAGE (When Date bareret. 2 & & g7 & )
. REPORT DOCUMENTATION PAq E -
V. REFORAT NUMBER b T GOVT A M . '
g AFOSR-TR.-8 1 - p232, 43 ? j
TITLE “and Subtitben 7 ﬂ‘?é E "
1
A : . .. :
. &'I’OPICS IN NONLINEAR FILTERING THEORY » ;
v 2 = iz echainal
1 7 AUTROR[S) B TR TRATT S T AR ST TR R -
,0DanieT/Ocone
o 137
ArQsR-77-3281 *
@ 9 PERFORMING DRGANIZATION NAME ANG ADDRESS o BRaEEAU ELTHENT pr: =T
. e 15 ™ p .‘
Massachusetts Institute of Technology SRLn R M TEK
@ p i . i / /r’
Lab for Information and Decision Systems : )
¢ | Cambridge, M2 02139 I 6LLOZF  2304/A1
4. CCHMYRCOCLLING OFFICE NAME AND ADDRESS ’ 1?2 RERNRT SaTE - _—ﬁ
< Air Force Office of Scientific Research/NM H irr- December 198 -
P Bolling AFB, Washington, DC 20332 AN ”““:0” LEEans
- i 18
&L 77 MCTITORING AGENLY NAME & ADDRESS i Jiffarent from Uontrinlling Oflicer & RE7 .#10 .+ 7 _ii7
ML T DS-TH-L 02/ ’
N N
16 DISTRIBUTION STATEMENT fof this Reporr; Tt A
Approved for public release; distribution unlimited.
r/" ’ -
; — Y,
V7. QISTRIBUTION STAYEMENT fof the ab<tract entered in [}]r,‘-p_‘)(,' f ifferent frem Rep ot — e - —_ -
. T
‘ B . LER A
R )
16, 3UFPLEMENTARY NOTES T S T 'i‘l\
- - ‘JS‘ S d ’
X y
S VAN
17 wEY A0R7 /4'.‘-:111»—\':9 A et '.r(/—ﬂ.:f Necnssars anf ientify b ) Tack nagmeb e - - ‘*—-'«Af 4
bﬁ AESTRAT — “Contin im 1 tmvrese S1d0 1 ne b s A i deetiv e Sdms & poeed or e - — J
% This thesis studies two topics in the theory of nonlincar filtering, the uae
< of multiple stochastic integrals to analyre filters, and the use of lLic J
<3 algebraic and operator-theoretic technigies to discover new, finite—dimensionally = =
: . ” . . ) > -
solvable filtering problems. The main results of the maltiple intesral ad
(YR technigies arc: . 1.7 A simplicr and more insightful proof of a resuit of S, T
— Marcus on filtering polynomials functions of a Gauss-Markov procoss, (2.)
. A forrmila for representing the product of two rultiple inteprals s s ot
: )
DD .2, 1473 Y AQ AN
y ERRE __ UCLASSIFIED “/’l()q;‘ IR
R R R SR - A Y T
Y. c— - . . . - .




M L e

4

WML ASSTFEIEN

SECURITY CLASSIFICAY'bN OF THIS PAGEWhen Data Fntered)

multiple integrals, thus providing a rudimentary calculus of multiple
/  integral expansions,

An cxpansion of the optimal means Square Pilter as a ratio of two —
multiple integral expansions, o fﬂr';';;_:
s adl
T et

4.0 Integral equations for the kermnels of the best mean squire filter of
the class of (finite) r order multiple integral expansions.

The problem of estimating a diffusion process observed in white noise is
studied with Lic algebra techniques. Necessary conditions, and in the
scalar case, necessary and sufficient conditions, are piven for estimation
algebra finite dimensionality. Fxamples of scalar problems with fin. dim,
cstimation algebras are discussed, and it is :hh(wm that, {rom among

them, no new cases exist for which Zakai's equation can be selved by a b i
Wei-Norman type method. -

.‘/’

[

_M(%/{{;ﬁ___-___ .

SECURITY CLASSIFICATION 7F THIS PAGE/When Data Frterad:




AFOS*-TR- 81-0232

December 1980 LIDS-TH-1058

Research Supported By:
Grant AFOSR-77-32818

TOPICS IN NONLINEAR FILTERING THEORY

Daniel Ocone

Laboratory for information and Decision Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139




oty "

December 1980 LIDS-TH-1058

TOPICS IN NONLINEAR FILTERING THEORY

by

Daniel Ocone

This report is hased on the unaltered thesis of

Daniel Ocone submitted in partial fulfillment of

the requirements for the degree of Doctor of Science

at the Massachusetts Institute of Technology,

June 1980. The research was conducted at the M.I.T.

Laboratory for Information and Decision Systems, :
with support provided in part by grant AFOSR-77-32818.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

AIR FORCE CPFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TG D7

This tachnical report hms Loeun revieved and is
8pproved for putl.c releace 1ANX AFR 190-12 (7).
Distribution is unlimited,

A. D. BLOSE

Technical laformation Officer




TOPICS IN NONLINEAR FILTZRING THEQRY

by
DANIEL QCONE

Sc.B. B8rown University
(1975)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF

DOCTOR OF SCIENCE

at the /
MASSACHUSETTS INSTITUTE OF TECHNQLCGY
June 1980

(© Massachusetts Institute of Technology 1980

Signature of Author jamu,e 1 060‘&9_/

Department of Mathematics
// May 22, 168C

) P
’

Certified by

Sanjoy K. Mitizr

f4§2232f2z¢4é?3¢3€3222a;y Thesis Advisor

Acceptad by

Miznael drcin
Chairman, Jenartment Commiciee




2
TOPICS IN NONLINEAR FILTEZRING THECRY

by
DANIEL OCONE

Submitted to the Department of Mathematics
on May 23, 1980 in partial fulfillment of the
requirements for the Degree of Doctor of Science in
Mathematics

ABSTRACT

This thesis studies two topics in the theory of nonlinear
filtering; the use of multiple s*ochastic integrals to analyze filters,
and the use of Lie algebraic and Jperator-theoretic techniques to
discover new, finite-dimensionally solvable filtering problems.

The main results of the multipie integral techniques are:

1. A simpler and more insightful proof of a result of
S. Marcus on filtering polynomials functions of a
Gauss-Markov process.’

2. A formula for representing the product of two multiple
integrals as a sum of multiple inteqrals, thus providing
a rudimentary calculus of multiple integral expansions.

3. An expansion of the optimal mean square filter as a
ratio of two muitiple integral expansions.

4. Integral equations for the kernels of the best mean
square filter of the class of (finite) rth order multiple
integral expansions.

The problem of estimating a diffusion process observed in
white noise is studied with Lie algebra techniques. Necessary con-
ditions, and in the scalar case, necessary and sufficient conditions,
are given for estimation algebra finite dimensicnality. Examples of
scalar problems with fin. dim. estimation algebras are discussed, and
it is shown that, from among them, no new cases exist for which Iakai's
equation can be solved by a Wei-Norman type method.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor, Oepartment ¢f Zlec

«t

rical Zngineering

PEERT T Sa—




ACKNOWLEDGEMENTS

First and foremost, [ would like to thank my adviser, Sanjoy
Mitter, for suggesting this research topic, for his continuous and
inspiring involvement in its progress, and for the ¢rant support of
my last year (AFQSR-77-3281B).

[ also want to thank the many fine researchers Prof. Mitter
introdu ed me to--among others, Steve Marcus, V. Bene3, M. H. A.
Davis, £. Wong, and John Baras. To them, through their helaful
discussions with me, this thesis owes much.

[ am further grateful to William Dunsmuir and Richard Dudley
for being on my thesis committee and for reading and checking this
technical work, to Nancy Toscano and ccmpany “or their cheerful and
professional typing, and to the NSF Graduate Fellowship Program For
their financial support.

Finally, thanks are due to my family and friends for their

support and encouragement over these lcng, graduate years.

.




TABLE OF CONTENTS

Page
BB TRACT + e ettt te ettt et e e e et et ?
ACKNOWLEDGEMENTS ¢ et e e e eeeennteae e ee et anatnaaaeaeeeeennnnnny 3
TABLE OF CONTENTS .« vttt et e aaaiaeeeaeeeeeeanaens 4
CHAPTER 1 INTRODUCTION. . e eeneiaieeeeeeeenniinnnannnn 8
1.1 The Nonlinear Filtering Problem................. 6
1.2 Summary O0f ThesisS..ucereiinrireneenreneannnnnens 9
1.3 The Fundamental Problem; Mathematical
PrerequUisitesS. .. iurre ittt iiiie e iineetaaaaanns 12
CHAPTER 2 MULTIPLE INTEGRALS. ... ittt iiiaennnns 18
2.1 Definition and Basic Properties of
Multiple Integrals...cciveiiiiiineeininanennnnn, 16
2.2 The QObservation Semi-Martingale Case............ 24
2.3 The Multiplication Formula........ovvvvrennnnn.. 30
CHAPTER 3 ESTIMATION OF NONLINEAR FUNCTIONS OF GAUSSIAN
PROCESSES ettt ittt it it it et et 53
CHAPTER 4 MULTIPLE STOCHASTIC INTEGRALS AND NONLINEAR -
FILTERING. sttt it i et ettt et o/
4.1 Filter EXPansions....eeeeeeeneerenneennennnnnn, 62
4.2 Best rth Order Filters. ... . iiiiiiiiiinenennnn, 80
4.3 The Kalman Filter.... ... iiiiiniiinniininnnannn. sC
4.4 Cuadratic Filtars. . v vt i, 35
CHAPTER 5 MONLINEAR FILTERING PRCEBLIMS WITH FINITZ
DIMENSIONAL ESTIMATION ALGERPAS. ... v, 129
5.7 GEstimation Aigebras and Filtaring............... 1z
acem f, -




BIBLIQGRAPHY

w

TABLE OF CONTENTS (CONTINUED)

_Page

Esfimation of Absorbed Brownian Motion
................................................ 128
Finite Dimensional Estimation Algebras.......... 138
.................................................. 170
HOMOGENEQUS CHAQS THEQRY...oiiviviivinviennnns 174

SOME CONCEPTS FRCM OPERATOR THEORY.............. 177

A s o nma

[ Y

cemmibas s




CHAPTER 1: [INTRODUCTION

1.1 The Nonlinear Filtering Problem

Nonlinear filtering theory is the study of a broad range of
problems in the estimation of stochastic processes. A typical
example concerns the estimation of a signal in additive noise. In
this situation, one is interested in the properties of a stochastic
process {x(t)[t>0} called the signal. One might want to know, for
instance, the value of f(x(t)), for a function f, or even the
value g{x(s)0<s<t) for a functional of the past of x(:) up to time t.
However, information about x{+) is available only through observation
of the process
rt
Jo

h(t) = h(s,x(s))ds + w(t) (1.1)

in which h is a given function and w(t) is a "noise", usually an
independent increments process. Thus estimates, or rather, filters,

for f(x(t)) and g(x(s);0<s<t) must be constructed from {y(s)|O<s<t}.

Minimization of the mean square filtering error is the
criterion generally chosen to guide filter design. Thus, in linear
filtering theory the goal is to produce the best (mean square)
estimate that is a linear functional of {y(s)|0<s-t}. Nonlinear
filtering theory goes further; it asks for the best mean square

estimate given the past of y(-). If Efz(x(t))<» and if F{ denotes the




g -algebra o{y(s)|O<s<t}, it is well known that this estimate is

vt(f) = E{f(x(t)){F{}. The goal of nonlinear filtering is to com-

pute or to approximate this conditional expectation.

Interest in filtering problems stems from their central role
in several applied subjects. For example, in the theory of com-
munication (Van Trees [48]), (1.1) is a common model for a signal
sent in a noisy channel; successful transmission of information re-
quires extracting the signal from the noise. It may also be
necessary to decide on the basis of {y(s);s<t} between two
possibilities, h(s,x(s))z0, s<t, or h(s,x(s)) = a given signal. #
This "signal detection” problem is closely related to optimal 1
filtering (E. Wong [46]). Stochastic control problems, in which
a control is to be chosen so as to influence signal process be-
havior, can also involve filtering if the control is allowed to
depend on noisy or partial observations of the signal (see

Fieming and Rishel [14] and references cited therein.).

The modern literature of nonlinear filtering begins with the
contribution of Kalman and Bucy [24], who formulated and solved the
model (1.1) for the case in which x{t) is a Gaussian diffusicn,
h{s,x) is a 1inear in x, w(%t) is Brownian, and f{x(t))=x(t).

Their main result, to be stated in lemma 3.1, proves that the
conditional density of x(t) given F{ is Gaussian and provides a

method to compute the conditional mean and covariance recursively.
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ror few other cases is such a complete and easily constructed
solution available. However, two very powerful characterizations
of optimal filters are known to hold in quite general situations.
The first is a Bayes-type formula for 7t(f), which is due to
Kallianpur and Striebel [22] and which, in essence, represents
Tt(f) by a functional integration in process path space (see
Section 1.3)., It is valid for Brownian noise w(t) with minimal
restrictions on x{-), h, and f. When the signal is Markovian,
wt(f) can be further characterized as the solution of a stochastic
differential equation (Fujisaki, Kallianpur and Kunita [15]). In
general, wt(f) cannot be found from this result because the co-
efficients of the filter equation involve optimal estimates of
¢(x(t)) for functions » different from f. Thus additional
equations are required to compute Ht(¢), which in turn require
estimates of yet other functions of x(t). The resulting system
of equations is in general infinite-dimensional. The cleanest
formulation of this infinite dimensionality is Zakai's [47]
stochastic partial differential equation for an unnormalized
version of the conditional density, assuming this density exists
(see Chapter 5). Finally, several very recent developments
promise new insights. V. Benes [1] has derived new examples of
explicitly solvable filtering problems, and Brockett and Clark
(171, Brockett [5], and Mitter [35] have begun applying Lie

algebraic and operator techniques to the study of conditional

i T AN ¢ - PNy gy
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density equations. These developments will be discussed in

Chapter 5.

The abovesbriefly outlined results constitute the principal
highlights of nonlinear filtering theory, but, despite their
mathematical depth, they remain incompletely developed. For
many common filtering problems little is actually known about the

filter structure and one must resort to reasonable, but ad hoc

techniques. A powerful and general theory for building,

analyzing and comparing suboptimal designs does not exist. \

1.2 Summary of Thesis

This thesis studies two different ideas for analyzing non-

linear filtering problams. The first is that of evaluating or

approximating filters by expansions in series of multiple
stochastic integrals. Such an approach is motivated by the fact
that the optimal estimate wt(f) may he thought of as a functional
Ft(y(-)) of the observation orocess. It is then possible to
explore vt(f) within the framework of a representation theory for
F, for instance, one that expands F in a series of simpler and
more easily manipulated basis functionals. Multiple integrals
are ideally suited for this, because they are easy to handle and

because they can represent a large class of functionals F
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(see theorem 2.2). 4

The second idea differs from the first in method and style.
Rather than expansion or approximation, it studies the question
of when a filtering problem can be solved in an exact, finite
dimensional manner. And rather than being probabilistic, the
techniques are algebraic and operator-theoretic. Brockett and
Clark [7], Brockett [5,6] and Mitter [35] have shown recently

that certain Lie algebras of operators, called estimation alge-

bras, can be associated to the problem of filtering a Markov
process observed in white noise. In examples with known, finite
dimensionally computable conditional densities, that is, the
examples of Kalman and Bucy [24] and of Benes (1], the estimation
algebra is also finite dimensional. Conversely, it is widely
conjectured that given appropriate hypotheses, Lie algebra

finite dimensionality will imply the existence of a finite
dimensionally computable expression for the conditional density.
This suggests the strategy taken up in the second part of the
thesis research: seek all problems with finite dimensional

estimation algebras and try to solve them.

The main results of our investigation are presented in the
following chapter by chapter summary of the thecis. Chapter 2
defines the multiple stochastic integral and develops some of its

fundamental properties. The main result here is the multipli-




N

cation formula, (theorem 2.4, Section 2.3), which describes how

to re-expand the product of two multiple integrals as a sum of
multiple integrals and which is an important calculational and con-
ceptual tool in the theory of Chapter 4. Technical lemmas needed

in Chapters 3 and 4 are also stated and proved.

Chapter 3 contains a proof of a result originally due to
S. Marcus [29] on the finite dimensional solvability of filters for
estimating polynomial functions of a Gauss-Markov signal process
given linear, but noisy observations. The proof here sets the
problem in the context of Gaussian process theory by using
multiple integrals and homogeneous chaos theory. It is simpler
than Marcus' original proof and explains more clearly how and why
a finite number of statistics characterize the optimal estimate.

This work was done jointly with S. Marcus and S. K. Mitter.

In Chapter 4 we present expansion theories for the general
filtering model of estimating a signal in white Gaussian noise.
First, we derive a representation of the full optimal filter as
a ratio of multiple integral expansions. In effect, this
representation evaluates the functional integrals of the Kallianpur-
Striebel formula with multiple integrals. Secondly, we pose a
basic problem,suggested by the multiple integral idea, for the
design of suboptimal filters: For any r, what is the best (mean

square) estimator having the form of an rth

order multiple
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integral expansion? Using the expansion representation in con-
Junction with the muitiplication formula, we derive integral

th order estimate. We then

equations for the kernels of a best r
rederive the Kalman-Bucy filter and discuss the case r=2 as examples

of the technique.

Chapter 5 discusses the Lie algebra approach to finite
dimensional filter computation. The main results are presented in
Section 5.3. For vector diffusion signals with non-singular, constant
local covariance, a fairly restrictive necessary condition is given for
estimation algebra finite dimensionality. In the scalar case, this
allows all possible problems with finite dimensional estimation
algebras to be listed. A solution of some of these filtering problems
is then attempted using a method developed and discussed in Sections
5.1 and 5.2, The result is that only those previously known examples

of Benes can be solved finite-dimensionally by this method.

It is worth remarking that the last chapter is discursive in
style and does not present a compliete theory. This chapter is
a preliminary report and discussion on calculations of interest to
a new, developing theory with important implications. To shorten

the exposition and concentrate on the main idea, we have omitted

certain cases from the analysis, but, as shall be mentioned, the
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results extend formally to them. In this regard, work remains
to be done in building more complete results. However, we feel
the ideas are sufficiently well-developed and interesting to merit

inclusion,

1.3 The Fundamental Problem: Mathematical Prereguisites

The work of this thesis employs techniques from a variety
of fields. Chapters 2-4 assume familjarity with certain elements
of stochastic process theory, in particular, stochastic inte-
gration with respect to Brownian motion, stochastic differential
equations, and [to's rule, Chapter 3 uses some homogeneous
chaos theory, which is summarized briefly in Appendix 1. Finally,
Chapter 5 requires familiarity with the use of Lie algebra/

Lie group methods in systems theory and with *the theory of self-
adjoint operators. Appendix 2 states the basic definitions and

resylts that are needed from operatcr theory.

We will adopt the following conventions throughout the
thesis: all Brewnian motions are assumed to have mean zeroc and
unity scale; if {z(t)|t>0} is a stochastic process,

Fy = o{z(s)|s<t} denotes the s-algebra generated by z(s) for

s<t.
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We now state the precise filtering problem to be considered in
the thesis. Let ‘x(t);t < [J,T]; be a mezasurable real-valued process on a

probability space {.,F,P). Let n(s,x) be a Borel measurable function.

Set
ft
y(t) = J h(s,x(s))ds + w(t) t ¢ (0,T] (1.2)
0
and assume
(1) w 1is a Brownian motion independent of the signal
process x{ )
(ii) E j hz(s,x(s))ds < » 1
0 i
Definition 1.1. A process {y(t)|t e [0,T]} defined by 1.2 satisfy- 1

ing the stated assumptions is called an observation semimargingale.

Given a functional f(t;x(s),s<t) of the past of x{:), we want to
compute the optimal mean square estimate
T () = ELF(tix(s),s2) FY:

The following theorem of Kallianpur and Striebel [22] will
be a principle thzoretical tool of this thesis. For a good

exposition, see Wong (46].

Theorem 1.1 (Kallianpur, Striebel). Let

T T
= exp [- j h(x(s))dw(s) - % ' h
0 0

,

dpP
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Then (1) PO is a probability measure, P and P0 are mutually

absolutely continuous, and

T T
- exptf0n<x<s)>dy(s) - [ pxtsnes]

t t
(i) EO(%%EiFt'y} = exp[[oh(x(s))dy(s) - % Johz(x(s))ds].

(111) W.r.t. Py, y(+) is a Brownian motion independent of x(:).

(iv) x(-) has the same law w.r.t. Py as w.r.t. P,

(v) Eff(t;x(s),siﬁ)iF{}

Eo{f(t;x(s),sgt)aﬁal t

O{dP [P

Finally, the concept of innovations will occasionally be

needed,

Definition 1.2. The innovations process associated to the filtering

problem of (1.2) is

t

WE) = (0 = | ng (nlsyx(s)) s

Interestingly, qiven mild restrictions on the nature of x(+) and h{s,x),

v(t) is a Brownian motion (Lipster and Shiryayev [28]).
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CHAPTER 2 MULTIPLE INTEGRALS

This chapter will define multiple stochastic integrals
with deterministic kernels, discuss their basic properties, and
establish both theoretical and technical rasults that are important
in filtering applications. The main result of this chapter is the

multiplication formula of theorem 2.4 in section 3.

2.1 Definition and Basic Properties of Multiole Integrals

This section is devoted to a brief exposition of the '
multiple Wiener integral and its elementary properties. Most of the
material is well known and is due to Ito ( 20 ), who developed the
definition  in its present form and demonstrzted its connecticn %9
homogeneous chaos theory. In addition, we prove some technical
results, including a construction to produce multiple integrals
recursively Trom stochastic differential egquations, impor<ant in

subsequent work.

Let b(t) be a 8rownian motion, and let

f50
Ft £ of{b{s)!s<t} denote its associated family of sub-:-algebras.

If #(s,s) is a measurable random process acapted to F.,(i.e., !
.1

fad
L]
™~
-~
(7]
[o%
wn
A
-}

»(ty) is F,_-measurable for every %), and {7

.

J
then far £ < 7 we can define the measurabie, adapta

-
3
.

!

' s(s)dbis’;

.

9
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see, for instance, Ltotser and Shiryayev [28 ]. Recall the i

properties of this integral

t L
stj s(s)db(s)] = 0 1

0 ’ (2.1)

t rt t ]
e [ a(s)an(s) | (s)avls) = | Eslshuls)as . |

0 0 0 -

We will use this single integral to define multiple integrals by
iteration, a technique different than Ito's, but egquivalent in

result up to a multiplicative constant. 1

Definition 2.1:

(i) f ¢ Lz([O,T]r) is separadle on Sy > Sy 2 L
if
N S\ N
flsysreessy) = ié1 ,g’ (Sﬁ' YiTI(Sr) for
T2sy 28,2 25
2 )
(i) T2(r0,717) = <fe LE(T0,TI) | F s

(a) separable on sy > «++ > s, and
(b) svmmetric:

A r - -r L. c -
LT/r3,7] ) = <= 2eg 7 § is symmetric:,

[

(RS ]

(i)
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Definition 2.2 Let £ = L2([0,T1"), 7 = Y,(s;)+-+v (s) on
- ToTgteTre o A ror
Sp 2 2S5 The »™" muliiple stochastic integral of T up
to time t is defined inductively by
t
r = . r-] . e ey
506) = [ rys) 157 ey dan(s) (2.2)
0

N
and IZ(f) is defined on all of Li([O,T]r) by linear extension.

Also, we adopt the convention, Ig(f) =

<
[y

Note that (2.2) is meaningful, because at each step,

using separability and induction, y](s) 12'1(72---yr) is-a measurable,
Ft-adapted process and hence may be integrated.

Theorem 2.1 For f, g a/tg([O,T]r)

£ Iz(f) =0 (2.3)
£ 15(F) 1(a) = &7 (+.9) 5
.4
t % Sr 2
S f
= j ..J f(s], 5r)g(s], ’Sr)dsr ds1
00 O

A
Therefore, /r! IE is an isometry between Li([O,T]r) and

IZCEE([O,T]")]. Since "LZS([O,T]r) is dense in L2([0,71") we can

N - A2 - .
extend the definition of 1. ta L {[O,.]r) by centinuisy.
[

i,
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Proof By (2.1), (2.3) and (2.4) certainly hold for r = 1. Let f=

v1(si)...yr(sr), g = a](S])'--ab(%.}, and suppose (2.3) and {2.4)

hold for r = 1. Then

t
r _ ) r-1,. . -
£ 1[(f) Ej,ofﬁs) 10 (e D
t
r=1 _
j vy(s) E Ig (ypreeyds = 0
0
<
R DO JR R r=1,.. r-ley. .
2 10(7) 10(0) = [ p(sdag(s) € 17 (rgreen) 177 (e s
0
rt Sp-1
= | e r1(sq)eeevq(s Jas{s:)
Jo Jo 1427 142p/ 3
ar(sr)dsr -ds,
The theorem follows by inducticn on r. r
Remarks 1 By continuity, (2.3) and (2.4) hold for all f in
T%(f0,11").
2. It is not necessary to require that f be symmetric :
since integration is carried out only over the set
S1 28y 2 "t 25 However, the convention of symmetry is .isevul
later an.
MA! s 2




3. For f ¢ QZEEO,T]r], let f(s,...) denote the section

t
I;(f) = 1I"(f(s,...))ds, (2.5)
0

but, to do this, we need a measurable version of Ir(f(s,...)). If
s

f 1is separable on S1 28,2 - 25, this measurabie version is

immediately guaranteed; indeed, this is how we defined I;. f 1

is not separable, Tlet {fn} be a sequencs of separable functicns

such that |[f -fl| , -~ 0. We then see that lim m.s IT(F (5aee))
n L s''n
N

is a measurable version of Ig (f(s,+-+)) and hence (2.5)

]

valid.

-]

Let © .Er = LZ(Q,FT,P) be the homogeneous chaos
r=0
decomposition of {b(s)|s<T}, (see Appendix 1 for the definition of

this decomposition).

Theorem 2.2 (1to)

200,717, Thus, if
2([0,T]r) such that

= r
For every r, Gr = {IT(f)lf €

—> >

$ e LZ(Q,FT,P), there exist kernels kr £
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Proof The full proof may be found in Ito (20), but Tet us skezch
brietly why it is true. First, note that the spaceas
V. = I;(EZ(EO,T]T)) are closed. Moreover, by using step functions
we can see that V. < Pr and Pr<: VO FeeetV, (Vo = R), (see
appendix 1 for the definitions of P and 5r). Since

G.= P & P

- - roqe 1t suffices to show v 1 Vg forr #g, that is,

that integrals of different order are orthogonal. This fact, one
of the salient features of multiple Wiener integrals, is easily
verified. 1t 7 = T%(00,717), ¢ ¢ T%00,71%. r > q, then, from
(2.5) and (2.1),

dsqo . ‘dS]

W
(@]

Multiple stochastic integrals generalize easily to the

vector case. If bT(t) = (b7(t),--~.bw(t)) is a v-dimensional

. . o 2 N2ira wnqr .
8rownian motion and iF f = L°(.0,7] ), we can define

> Cots gm.' AR

Sristornifiien 3




Pilyeesd £ e -
] r : P . , L
! f = oo o) T «eo e 3 z b \.- ,: <.
AT <0> J j \S-l, ,br b:‘r‘-r, b~1( l/
0 0
If (raiqeeet ) f (q,k1---kq), then the integrals
Fidyseee,d q;l sy d
It ! "(f) and It 1 q(g) are orthogonal.

In the case of separable kernels, a2 constructicn cbserved
by Brackett (3 ) for realizing deterministic Yoiterra series can be
adapted to produce multiple stochastic intagrals Trom stocnastic
differential equations. T7This result motivates the use oF multiple
integrals because it says we can calculate, ar at least aporoximate
them recursively. Moreover, the criterion oF kernel separability

is used in Chapter 3 to prove Tinite dimensiona’l computapility o7

certain ootimal filters.

- - . A2 r - - .
Theorem 2.3. Let f ¢ LS(QO,T] ). Then, for scme n, there exisis
n e o
an R -valued process z(t) that satistiss
)
dz(t) = 7 A (t)z(t)db (t; z/3) =z
a3\
1;1 % 2 0
for some n x n matrix functions Ai(t), 2= 1,-+¢, v, and Tor scme
) r;l1’...’1r T
n-vector function c¢{t), such that I, (F) = c (t)z(the<T
. =
Proof [t suffices %o consider 7 = /,(S]>---v \sr) Sucpose
1
Leoo®oees lso=L, g < iz < «ee < 1., 3nc define tne {r+llxipsll
[ - | :
| v‘ -l
matric A {%)

. ~ [y L e NNl e s SOME
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. '(.ik<t)a (1».]) = Uk"jkﬁ-]) ! ik iJ

2
0 , otherwise
That is:
o ]
iy-row 0 yi](t)
Al(t) = ¢
1,-row 2 v (t)
J
0

r+1

Otherwise, define Az(t) = 0. Consider the system z(t) ¢ R

dz(t) = i Az(t)z(t)dvi(t), zT(O) = (0,.-+,0,1)
2=]
Ae have
zr+](t) z 1
‘t
(t) =1 4 (s)db, (s)
Z‘ Jo(r G“,-s

. . 8N aite pmmmm oo
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t fsr-l
f ' \ .
z(t) = 1 oo wysqdeeer s Jab, (s )eeech sy
1( ) JO }O I( 'I) /Y'\ r iY‘ ) 3 i
Y“,l-‘ 2’?‘
Thus [ (f) = (1:Oa' ’O) Z(t)

Finally, we will need a Fubini-type lemma on the inter-

change between ds and db integrations

2
Lemma 2.1 let f a‘ﬁ'([O,T]r). For t < T

t (t {sr-Zrt
r-lie e = 1 . \
J IS (f(sy+++)ds j ] | f(u,s], Sy
0 0 0 S
du db(s,_y)e-db(sy) . (2.8)
t
Progf Define gt(s],--o,sr_]) = fs f(u,s],---,sr_l)du. The r.n.s. of

(2.6) is I;'l(gt). To prove the ! lemma, simply verify that
et 177 (s e - 118 = 0

by using the basic properties of the multiple stochastic integral.

2.2 The Observation Semi-Martinaale Case

For purposes of filterinc we must define muitiple stochastic

integrais
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t r-1
J e J f(syseras,)dy(s.) - -dy(sy) (2.7)
0 0

with respect to observation semi-martingales

t .
y(t) = j x(s)ds + w(t) . (2.8)
0

(Recall, from definition 1.1 of observation semi-martingales, that
x(-) and w(-) are assumed independent, w is Brownian, and
7 .

E J x2(s)ds <= forsome T, 0 <T < =.) Such integrals are well

0
known and are developed extensively in martingale theory; Meyer [33]

is the best reference. However, the structure of the observation semi-
martingale case allows a simple construction, which we develop

here. Begin by noticing that, as stated in Theorem 1.1, y(-) is
mutually absolutely continuous w.r.t. Brownian motion; if P

is the original measure under which the processes of (2.8) are

defined, there exists a Po mutually absolutely continuous w.r.t.

P, such that y( ) 1is Brownian on (Q,F,Po) for t < T. Therefore,
for f ¢ L2(L0,T]") we define (2.7) as the multiple Wiener integral

of the previous section by working on the measure space (Q,F,Po) and

we call this integral I%(f) without reference to measure.

Remark The process with respect to which multiple integrals are
taken will - always be clear from context and so will not be

indicated in the notation I;(f).

*For simplicity of notation, we have set h(s,x)= x in (2.8) (see section
1.3). The results to follow are valid for generai h satisfying the
conditions specified in cection 1.3.
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Fo; F¥ -- adapted processes  s{s,w)
such that P{{ ¢2(s)ds < »} = 1, we can define the integral
0
t t t
j s(s)dy(s) = j a(s)x ds + J 5(s)dw(s) (2.9)
0 0 0

(see Liptser and Shiryayev [28]). As with the Brownian case, (2.7)

may be interpreted as an iteration of (2.9)

Llerma 2.2 Llet f = 12(C0,T1").

t

151 (f(s,+))dy(s) t<T.

HURSH

Proof: This r%sult is an easy consequence of the more general fact:
the process f 2(s)dy(s) defined in (2.9) is stochastically equiva-
0

t
lent to the process (J ;(s)dy(s))»  formed by working on
0 o]
(Q,F,PO) where y 1is Brownian. The equivalence of these integrals

is obvious for stochastic step functions

n
¢(S"U) = ¢(t’tﬂ)]

(s)

and it follows for the general case by taking limits of such

step functions.

. o i N
](ti’ti+ﬂ (s) indicator function of (ti‘ti+ﬂ
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The expressions (2.3) and (2.4) for the mean anc covariance
of multiple intagrals no longer holds in the semi-martingale case.
However, it is important in latar calculations to evaluate these

moments, and, for this, the next lemma is useful.

T
Lemma 2.3 Suppose E[f xz(s)ds]r < =, Then for k < r and
f e ’tz(EO,T]k) 0

(1) Eflt(f)lz,i My i[fllzz; M, < = is independent of ¢
¢ s, Lt

. Koy o | k-1

(11) € 15(5) -jo...JO F(sy0ee a5y )

£ x(s1)---x(sk)dsk-»-ds1 .

Proof. We will actually prove by induction the more general
result: forr> 22>k g,000, €[0,T]
=112

cse Yk 2 . MVis / \
E[X(Gl) X(Gk"l'.‘)LGk(f)] ihl,k(gk+1’.-.’u2)!‘.“ \2.10,

where n, e L ([O,sz'k), and
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Lemma 2.3 is the case @ = k for every k < r. First we

demonstrate {2.10) and (2.11, for r > 2 > k = 1, using the

iterative formula of lemma 2.2 and the incdependence of x{-) anc

w(-). Thus
N °1
£x(s,)wx(3,) [ H(8)ay()1% = Elxls,) e xlag)t] Fls)x(s)es +
Q 0
0'1 T
[ #ts)antsiTe 2 | Tuo,) e ox(s) s » (212,
0 Q

{ 2

2 E[X(GZ)Z"X(O'Z)ZJ]HF = hZ,T(JZ’“’Jl)iiI i

To derive the inequality in (2.12), the Cauchy-Schwarz inequality
is used several times. h e LI([O,T]2°]) for 1 < r because

i 251
E[} xz(s)ds}r <=, Likewise
0

c
1 c
1
E[x(cl)--x(cz){of(s)dysl - E[x(cl)--x(cz)[fof(s)x(s)ds -
(2.13)
O'-l ”J'-l
[ #s)en(s)1] = | FIsIELx(s)x(ay) - ox(s ) Jes.
0 0

Now suppose (2.10) and (2.11) are true for 3 fixed «

and all z, r > 2> k. Again, using It+](f) = J It(f(s,--))dy(s),
0

Cauchy-Schwarz, and induction,
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- kK+1 2
;[x(cl)“x(gk‘?z)Id (f)] s
k+1
Ik+1 s
2 ! e tk(o. )< x(a, L )x(s)TE (75,1112
) X 01 X S X s1 52 52, B! dsch]
0 0
%%
k .oyn2
+2 f E[x(oz)--x(ck+2)ls(f(s, )0 4ds
0
T
2
. - ee el
i [2 j hl,k(s’dk+2’ 7U£)ds * 2h2'1,k(ck+2, )vZ)]If'!
0

2
e Gage o) 112,

By induction, h 1€ L1([O,T]1'k'1). Thus (2.10) is true for

29k+
k + 1. That (2.10) holds for k also implies

.
= [ (55,0 0)ds <
0

Thus, because of (2.3),

t
e [ (f(s,- ) )aw(s) = 0,  for t<T.
0

With the aid of this equality we can prove that (2.17} 2iso is true

for k + 1.

Sl o
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This completes the induction step. [Inducticn stcos at < = r since
P
. . - - r
we have required r > 2 > k in order to appiy :(f xids) < =,
‘0

2.3 The tultiplication Formula

) To any given functional ¢ ¢ LZ(Q,FE,P) of a Brownian

motion b(t), t < T, one can associate a sequence of kernels

Il *

2
(R T ogs ke £ T0([0,717), such that

oy
I 10(k

b=k, +
° n=]

)

n

For applications, it is necessary to have rules for manipulating
this representation, rules that describe how the kernels kn
behave under various transformations of the s's. This section

states, proves and discusses such a rule for the simpiest case; i<

fe QZ(EO,T]r), g s'tz([O,T]q), what are the xernels {Li}?zo such
that
r q _ L v
I(F)T{(g) = 24+ Z Loe) . i
r=0

The answer will require some new definitions.

Jefinition 2.3 1

-l R

. - . . - - A
(i) P. = nrnjecticn of LZ{[O,._ ) ontd LT{Td,7

-




where Sr = permutation group on r lettiers.

(1) For integers r,g,k, 0 < k < min(r,q), and

f e QZ(EO,T]P), g e L [O,’:q

(fk ® <t)gk)(31 [ ,JﬁQ"Zk}

j .],"aska:],"iar_k)

g(S] 2“',sksor_k+-l )":3r+q_2k) dS.("'dS-.I

(111) fk Q(t) gk(O]s"ycr_._q_Zk} B

(iv) fOg=7,0O(tlg

e e o -~ .. fod 1
qu[f(U]: ’*)S(JY"H’ ,Vr+q)4

C} (t; is tne basic operation by which new karnels are

¢reatad from 312, and, indeed, we will shcw in lemma 2.1 <nat

~ Y}
O /:_\‘~ . 2/—,, ] v .2/(‘-‘ -10\ /l\Z(g-. —alf+o=Cx. -~

- . ~aT*s -
: * EI - iuvy e 0 oe7tts PRk

[2Y

P TR T R " a—— saine
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stand O (%), it is useful to think of the functions f and g
as tensors, which they in fact are under the isomorpnhism
2<£o,r1r) = L[0T @ - @LA([0,T]) (r-fold). Then

(t) nay be viewed as a tensor contraction, and
C)(t) as a symmetrized tensor contraction. The notation
(
(

@

a sum

t)g, 1is meant to recall the summation notation, i.e.,
1nt=gra1) is taken along the first k indices of € and g.
it is in this definition that we make use of the convention that the
integrands f and g are symmetric; otherwise (Xt} wouid have

a much more complicated definition. Finally, as an example of (:),
consider the case r > g = k. By direct computation using the

symmetry of f,

t t
= -,—..—__I l.. tr {’ £ 3
Kr-q)[ q( )O -lo SZ \515 ssq’v /1) ,JT“._O\/Q S]s ’Sr‘
r-q
X dsq- as,
ft ’t
=L [ s . \ .. ..
= qf )0' jOT(SI’ ':quﬂ-{y";cr_q,g(s-l, ,Sq)dsq dSY

The Main thegrem o7 this section is:

Theqram 2,4 at 7
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min(r,q)
ooy 19(q) = § rTAR2k rHge2ky. iy y v
‘-t(‘) It(g> k;o It (( Y"k )'k O\tlgk) . (-~‘~/

(2.14) shall be referred to as the multiplication formula. Cur

proof of (2.14) uses [to's differentiation rule and induction, and
it is fairly complicated in its details. Therefore, before embarking
on the proof, we will set forth the relevant properties of (O

in some preliminary lemmas. In what follows, f will always denote

a function in 'tz([o,T]r), g a function in 'EZ(EO,T]Q).

Lemma 2.4 For every t < T

f, O (t)g, ¢ L5([0,T1797%

In fact

whers ¢ is independent of f and g.

Proof It suffices to prove the lemma for (¥, instead of O

since P is a bounded operator. Let do = dol"d°r+q-2k

ds = ds]--dsk. we then have, using the Zauchy=Schwar:

iatesteihi s g .

aibesinitti,




-2
Syt aT st
1 < r+q-2K

] _ _
= (kl.) f da J" ds f (S]".’SK’OT""UY-_;()
[0,T17*9-2k g, 77¥

= .2
x f SIS ER LSRR ERLEL AP
[0,71"
= ——, iF11% el
(k1)

Lemma 2.4 establishes that the kerneis in the expansion
2.14 are sguare-integrable and hence that the multiple integrals
are weli-defined. The next lemma collects useful identifies and
facts about (¢ . Recall that tne notation f(si""sk"') in-
dicates the section of f in which the first X variables are

fixed at S tsSys respectively,

wramre Al e da i B2 1, KD
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AR - 1 R = o) - \
(1i1)  For x > 1, lkCD (%) gk(zl, a2k
1
_ r-k - q-k / .
 Umgzr o i O s+ g 7O foslegiyd j

(023 :3r+q_2k) (2.18)

(1v) FO()glaysesg) = g Hlegs ) Oft)sg
J-__q—: { e - Y /" e. = ) ’7 I-\
r+q ’@ \b)g(v"a )] V99 S q o2k Vel i/,

Proo’t
(i) follows by caiculations similar to the precof of
lemma 2.4, namely, one writes out the definition
of the square norm and applies Cauchy-Schwarz. The
details wiil not presented.
(i1) By direct calculaticn and definition, using the
symmetry of f and g extensively.
f O (T,
t t
- ] f
pr+o-2kL ET'f e J “ST"CSkf(Si""S
0 0
,tf*l Sx-1
= P 0:‘ I R - TR .};/3,
r+q-24 190 ) 1 '

. - iy ot }.ﬂ.ﬂuﬂ;ﬁn < A v oy




u

(i1i) and

being just a special case of (iii).

36

I 3
P Tl_ [l ool Flg, e, 3 vaicls e ,S
requ2k kT o T TR TR e

990 0

t 5 sk-1
1 ( 1 ..f ¢ . e lg!
Preg-2 T 98 [ P00 s s
’t

ka(J)gk+ ! ds f(S"');(_’iO(S}g(Sa")k_]

(iv). The proofs of (iii) and [iv) are similar, [iv)

as it is simpier. Note first that, by cdeinition,

where 7w ¢

Now using

r

ve shall only present [iv)

ra=
FIELT(C]a") O ()9](sys v repeg)
= T floysc_iovsttso_ )
réq (rg-1) __g T17Te(2 el
r+g- i
ceys ‘ 2 s
g(cw(r*?)’ a(rq)! Cmere
Sr+q-l is interpreted as a permutaticn of 2,..,r=¢:

the symmetry of 7, (2.18) may be writian as:

.th
J position
- e v
yooTT I IR S e Y=
.T..S‘ \ Y. 2), E) 'T'\J'Z), ‘) 7(:"»:’ » .
““r+a-1

i
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US’in t' ] T A~ - / VR _Q_ CO f+Val Y
g the expression anaiogous o (2.19; for el SFICIRLY
s, ) O (g = T O ) Glarae) (oo, T, )
\T"‘-'q \ ]: / -7 J""q \ - »—'l’ /4 \-2, ,4r+q

- jth position
= 1 ¥ N e oo 7
tranll L flongyrr ooy
v TS pg-1
S (1) 2% a(rsq)
: T
) L f\GT(px’ Trlr+l))
j=1 wabr+q_1 1
ifh position ;
g(ow(r+2)""°1"”Jn(r+q))i
= T v f(J o.)g(g e T ) ‘
[ L I D T DA TC

r+q

= f Q (t)g(G] ""cr.L

)

This is the desired result.

Proof of theoram 2.4. We use Ito's differentiaticn formula and the

rreceding lemmas to implement an induction argument that proceeds
in two staps: '

(a) Show {by induction) that (2.14) hoids for orders » =n, g =1,
7n

o ! . T e AN RUREY T
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(b} Assuming (2.14; for (r-1,q), {r,g-1} and {r-1,q-1), show that

it hoids for {(r,q).

(a) and (b) then provide a consistent scheme of induction as shown

by the following diagram demonstrating the paths of implication.

“+ o
2 1
3 S = ¢ =
s= A oA ﬂ e%e
2 C = 0 = C =
2 Y Z 15 727
1 C B o = 2 = 0 =
1 2 3 4
=

Step (a; Forr=1,qg=1. By Ito's differentiaticn rule

f - s
(sients) = [ | [Fspslsg)rlsylatsy)Teslsyien(s,
t

(Vo)

+ j £(s)g(s)ds
0

Suppose that the thecrem ‘s true for (r,q) = (n-1,1) and let
fe ?Z(EO,T]n}, g s/tz([O,T]). Applying Ito's differsntiaticn

rule again,
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t k :
IHAT9) = | 9(s) 10(Nas(s) = | 1075 (s, )Tt a)an(s)
0 0
t
+ [ 12N g(s) (s, s (2.20)
0

By induction,

Vs, ) (g) = 1alf(s,) @ al) + 172(2(s, ) O (s)gy).

Lemma 2.5(i) and lemma 2.1 justify interchamging integrations

in the last term of (2.20):

t ' t

n-1 sre L. _ Ln-1 - .. Vo
[ 5 ates, e = 177 slFasy s, o)
0 1
Thus, by substitution in (2.20)
t
Nyzy ot f..n S PR Ty
(7)) T.(g) =+ (I (g(s)f(++)) + I (n[f{s,--) @ ¢l)idb(s)
; )
| 15, ), @ (s)gydeb(s)
0
t
- IZ’I(} g(u)tlu,sy, ’Sn-1>d“)
3




# 17N f gy, 00) @ (oq)gy(agseesz,) +

t

+ j g(s)f(ssgl ,",Gn_])ds} .
0

And by lemma 2.5 (iii) and (iv) this becomes

which completes the induction step of (a).

Step b Without loss of generality assume that q < r. The induction
hypothesis is that theorem 2.4 is true for (r-1,g), (r,g-1), and
(r-1,9-1). Apply Ito's differentiation rule:

e
3

pnide) = [ 1

0

10 (£(s, ) )ab(s)

)

U

t
[ .q-1 Foey
+ JOIS (9)15()db(s)

t
R G ERD S CIERBIERY (2.21)
Q
3y induction
: 12 90
min(g,r-1) 2.2l
R P - rHa-1-2k ,rvg-t-24 4
rq, i \ \s! Yoz > . = & ~ i T ) 2,
ER A Gt L R
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- min(r,k) N
OIS CCRD IR R (e A JUINERE
(2.23)
(s, 18 g(s, o)
min(gq-1,r-1)+1 _ o
SR A (U L ENR ARECR LIRS AR
‘ (2.24)

Now substitute (2.22) - (2.24) into (2.21), interchange dt and db(t)

integrations where necessary, and collect like order terms. The

result, after some nasty calculation, is, if g <r

Iy ()13(q)

- LN @ 9]+ (DO als 115, )

9l rige2k, reqel-2!
C92Y regezk, reqel-2ky pal . .
LT T ) [y 1@ (sdalsyn ) Hspnras o)
r+q 1 2k )T ..
( [f O(S g(s-l, )k.]<523 ssr+q_2k) ‘
ft |
+q- . \ oL .
SR ), 4 Oelu e (2.28)
3
+ Ig RICHY ,-(3 5109421 SEFE

— '

e itositmetli i




C)(u)g(u,"} du}

Tig-1 -1

Now examine the kernels of the last expression one-by-one. The first

kernel equals

)

(TN G (Fls ) © 9} (5507 a5

* ;%q- (FOalsy, )50 a5 pp)
= (OO Q) sy ) - (2.27)

The last equality comes from Temma 2.5(iv). Likewise apply

lemma 2.5(iii) and (iv) to the kernel of I§+q'2k » 1 2k<g-1

The kernel of 1} 972

equals

("33 E?Eagég (Fls15 0 O (59 ) (50

r-k
+._°._‘_k_[,:@( ig( c T )
rrq-2k ok 2 31/9USy Tl Vs
”t
]
.. D (gl \ co
+ <JS f(u’ )k_]O\J)g\U, 1k_]dU){.32, /
1
= (r‘*q'z.’(\P(- 14 \ vy .. \'
\ r‘k !L‘TRQ Slzgk)\slg ’sr"q—Zk’
{ &/ PP [ P .yt ‘. .
+ \ Ldy ,k_w‘O WM gldy, ‘k_]uu, .,:,
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+q-2Kk | \
= (rr?ka/[(fko (t)gk)(ST,",Sr+q_2k)] (2‘28/

Finally, in the same way, the kernel for Ig-q is

f O . .29
(F, @ (t)g ) (55 s ) (2.29)
By combining (2.27) - (2.29) in (2.26) we complete the induction

step (for q < r):

o ()

(r.a)
r.s\y34 _ &0 r+q-2k, ,r+q-2k, -
It(')It(g) = 2‘ It (\ r-x )Tk
The proof for q = r is the same; we need only check that the lowest

order contripution in (2.25) corresponding to k = g 15

The muitipiication formula reiates directly to properties

of Hermite polyncmiais, as one naturally suspects From the connecticn
between homogeneous chaos and multiple Wiener inteqrals. In facst,
letting {hn(x)}n=0 cenote the Hermite palynomials defired in

Apoendix 1 and taking to be a complete arthcnzrmal asts

3 r - r g -~ - - - - —~ ~ - * LY -
of LZ(LO,;] }, recall from theorem 2.2 3inc tregrsm 4. "rac

. 2
“’n 'n-1
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] LA Py, _ =
IpO 1 e Ty(0,117) = 6,
n T “
= g . AR e = :
Span 1§1hpi(f ¢ji(c)db(c;)‘p1+ *p,7rs J; are N
0
pairwise unegual } . (2.30)
Now, the hn(x) satisfy the identities . :
min(r,q)
- r,q r+q-2%
(gl = T AR 0 (23

et

for r,q > 0 [see e.g., Magnus and Oberhettinger [26]). Comparing |
(2.31) to (2.14), one thus sees via (2.30) that tha multiplication ‘
formula effectively generalizes the identities (2.31). There is a

discrepancy between (2.31) and (2.14) in the factors multiplying the
expansion terms, but this is due to the different normalizations in-

volved in the definitions of n_, " and ©

It is natural to ask whether theorem 2.4 can ke proved
using (2.31). However, this strategy appears exceedingly difficult
to implement and I have not succeeded in doing so. Recently Hida [13] '
obtained a proof of the multiplication “ormula independentiy of
nyself. His proof effectively generalizes <he tachnicques used %o

prove (2,21}, out %o 2o s0 he Tmust invoke nis advancas theory of

seneraiized 3rownian “uncticnals. Zur Iroc?, fncucn fnvcivel
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cemputaticnally, proceeds via elementary methods.

The multiplication Tormula can also Se used to 3eneralize

a fact abcut Gaussian random variables. Suppose Z
2

is & norma

distributed r.v. with mean 0 and variance ¢°. Then the well known

identity

expresses the nigher order mcments of Z 1in terms of the variance.

Clearly it implies that if Xn is a sequence of mean (O normal

r.v.'s, Exi =32 3as n =+ = iff Exim ~0 asn->=
integer m > 1, or, in other words, that mean square
order convergence are equivalent for any given m.

an element in the mean-square closure of rth order
a Gaussian process, and hence itsmoment convergence

similar.

-

Theorem 2.5 For any r and k, thers exists an

that
. 2k o112k
£ t(IT(f)) < Mf,k!’r’;
for ail = T8([0,TI)

Proof issume that, for a ziven n,

for any
and thh
Sow IT(F) is

ct

polynomials of

progerties are

v =
Jr K < such

3

(2.32:




Using the multipiication formula there exist kernels h such

that

. (n+l)r
(™t = T T ke
2=0

and, from lemma 2.4, there will exist an N such that

]
k2 e

2 <yipe20m)
O J -— to (S

[h

| < N

J

2

ne-1233

for every 2. Thus (2.33) and (2.24) will hold for n + 1 also, and,
since the case, n = 1 is true, they will hold for ali n ty

induction. B8ut then

n
eI = ] el

<M e,
3f course 4" will depend on n  and r.

-n =y

. RPN . : .oo~2,
Coroilary LaF foip=y @nd £ be functions in L7([2,7] ).

Then ‘jfn-F -~ 0 as n-= iff




Y‘(f

2k
EL17(Fp)-17(F)]

-0 as n - =

for any or all «x > 1.

Remark Theorem 2.5 is not new. I. Segal [33] has derived (2.22)
in the context of Gauss measures on Yilhert spaces. In fact, he

obtains a universal constant ¢ such that

E(15(F) < 2

theory cf n ner-

(oW
[€V]

Tneorem 2.5 i3 also related tc the “elison

contractivity; see Mit=er and QUccre 36 . Nevey 23 s 3 3o0¢

reference for orne versicn of Nelson's nypercontractivity tneorer.

McKean [32] and Wiener [45] also develop identities for

2
expressions similar to E[(I?(f))‘k] in theorem 2.5. In these

treatments, the interesting corollary above is not cenerally observed.

The next result is a variant of an easy and well-kncwn
identity first appearing in Ito {23}, and stated here in (2.39).

proof employs the multiplication formula.

2

Theorem 2.6 Let o c L (:,F?, P have the multiple integral expansion

. T -~ A AN e
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Then

be the indicator function of [C’:i]‘

r-2n,.n
+ 7 I h

wheres

:. - in! r— S
[2] = maxinin < 5

and each kernel h_ «-.c 7as tne form

functions eacnh cepend only

- . -~ - - < - - 1 s " ’\
0% tre indices ERRRRRNe Tnis Tact will greatly
! ¢ J
e
- - et 3 - . ' B . ca e
37 2372473t n; - Tabicy, e o 35 WL
- 3C . - ' r
\ r
e Cw
i¥nca Z.I8 s qatiI e -~z T 0% z2n
erery’ - 2y cazgrecin. Thus, f.oooszs DUIS :

n=0 ' 1

We will first show that

.
]
o~
N
w
wm

on a proper subset
siTolify the task

e seen 0




Now expand all the products in this sum by the multipiication formula.

[t is easily seen that the kernels of any multiple integrals that arise

from expanding the terms
UCDHAL U

Ooog
9 r

will be of the Form (2.35). However, the first product is

The first kernel is

for > §yr00> 5
59 1 =7r
- o) i ] .
8ut note that if § >0, v (sj)/ (so,=r (so) Ter s, > s, since
g2ty 25y implies 79 28, Thus the last axpress
written more simply as

v - 3 |y s M B i AN RSP it




Uy
(e

P r :
1 .0 r 1 -1 i J+1 r
WOls Vouns Ve T ey o ) ( TR E
=T syl (s T £ (sy) (5o b sy ieem (s
&
(2.37)
and only the first term depends on 21l the indices IgaTia S e
~
Likewise, the second kernel is seen to be
.UI
; r .
N (s)y(sy Y (s ias (2.28)
) 1 r-1
0

\

The only kernel in (2.37) and (2.28) that depends cn every incex is
J

1 o

—

r+l

Thus by substituting the results of these xarnel computaticns into
the expansion of b(sy)--b(a.), we find that (2.35) is true for

"
r+ 1 as well. Thus (2.33) holds for all r &ty incucticn,

As a result of [2.35)

T
3 ’
2 b(3q)-eeb(z)
301‘-~3c ] r
r
r
= Yol - of EQ I?r(l]‘...( \
:-]' 2 r i
. Er r"'LZJ- .V"-?.n,y al \
T N, oo e~ L 2ol n* Yo )
S R P B S R




S NN N O
R :
S
= =30 P .
—3‘7]""0,.,‘ / J SR ’SY‘N[O,CIJ(ST’
(OO Q
! ] ¢ 293
[0,03(s.) ds. e, (2.39)

= kr<c],...,3r)

This completes the proof.

Finally, we note that theorem 2.4 extends easily to the
case of muitiple integrals with respect to observaticn semi-
martingales.lUnder added assumptions, theorem 2.5 and its corollary

vr

extends also. Indeed, let It y(f) now denote integrals with respect
]

to y and let ?, be the measure w.r.*. which v(-) is Srownian.

C
,p‘2
Theorem 2.7 If EO (63~) < =, theorem 2.5 and its corollary noig
"0
for I
T

Proot  Use the Cauchy-Schwarz inequality to cerive

2
N DS | I SR dP1° 1/2 pir 44
;[‘:,y‘(v)] JRREACTA AR Eo/z (3, :3/ SNARE K
/2 e G a2k
-0 dPO’ I S
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Remark
2 T
dp e [ 2
E0 (EPE) = L exp }!OX (s) ds. See, e.g., iWong [+51.

! L Tl Y A
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CHAPTER 3 STIMATION OF NCONLINEAR FUNCTIONMS OF GAUSSIAN
PROCESSES

In this chapter, we begin the applicaticn of multiple
integral expansions by treating a filtering problem considered by
S. Marcus in his thesis [29 1, (see also Marcus and Willsky [231 ]).
Marcus succeeding in constructing a class of filtering models which
are interesting for systems applications and for which optimal
filters can be finite in dimensionaily and recursively computad,
(indeed, a rare and happy eventi). Roughly sgeaking, these models
pass the outputs x(t) of linear stochastic systems through poly-
nomial nonlinearities and seek to estimate the result based on

linear observations of x(t) in white noise.

Marcus's original proofs accordingly rely upon linear
filtering theory and Gaussian momen:t identities, and so his
technigques never really leave the realm of Gaussian process theory.
Cne naturally suspects that the proper framework for nis problem
is homogeneous chaos theory, the theory of solynomials of Gaussian
processas. In what follows, we will show this suspicien to be
well founded by developing a direct proof of Marcus's results with
multiple Wiener intagral techniques. We feel this prcof 2xplains
)

N .
-2rs ocCcur In

in the clearest manner why finite dimensicnal £
this oroblem ancd hew the fittar s5%atistics arisae. The resul=s 0

¢ De Ziscussed ners néve aopeared i Marcus, Mitter, Zcocne JIT

[1 - . . L e Wt e Py o AT AMY-e . i G - N '
- . .,“‘M" ‘IH
S
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-

where an extension by Marcus to the discrete time case is also
presented. It should be notad, as an aside, that solving the dis-
crete time case requires using polynomials ¢f the innovations,

(see Marcus, et. al. [30]). This feature, which does not occur for
continuous time, is explained by homogeneous chaos theory. We will
not comment on the discrete case any further. Finally, Hida and
Kallianpur [19] solve the related problem of predicting polynomials
of a Gaussian process using noiseless observations, and they also
use multiple integral techniques. By contrast, the resul*s here

deal with the case of noisy observations.

A brief exposition of the homogeneous chaos theory relevant

to this chapter is presented in Appendix 1.

The problem may be stated as follows. Consider the linear

system:
dx(t) = F(t)x(t)dt + G(t)dw(t) x(0)=xo (3.1a,

dy(t)

H{t)x(t)dt + dn(t) y(0)=0 (3.18)

In (3.1): x(t) ¢ R", y(t) «cR"; F, G, and H are piecewise con- '

A

tinuous, bounded matrix valued Functions; w{%) and ~{%) are inda-

nendent, vector Srownian motions; and Xg 15 a Gaussian randem vari-

able indesendent of toth w(+) and ~(+). We consider x{%) <2 Se %he




!"* R ——
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ft which are finite Volterra series with separaple Kerneis in the

elements of x(t), (see definition 3.1).

In 2.1, we gave a construction for realizing a multiple
stochastic integral with a separabie kernel as the output of a
stochastic differential system. By the same construction, we can
produce fes i.e., there exist matrices Al(t), 2=l,-4m and a vector

c(t) such that

£, = < ()z(t) (3.2)
where
&2 . o oa e (6] 2(t) 2(0)=0 (3.3)
dt AL +J
2=

Figure 1 illustrates the situation:

————
! \

W (£) X(t) J

> (3.1a) (33) ——

1(t) \/_ﬁ\ y(t)‘ r @ )

Filter —_—

N




The following definitions are convenient: !

Definition 3.1 i

i1 ip " Tloc
4
2 \ 1
= v Yoo c L) .
(Where .r‘.o = {'O(t” {O € L]OC( IR))
i
Definition 3.2 The filter £,7E0f (x(s),s<2)!7f; is finite-

dimensionally computable (F2C), if it can be computed from the
Y p p

cutput of a finite dimensional stochastic differential eguation

driven by y(%). |
Marcus [29 ] proved:

Theorem 3.1 For any p, if ft : v, f_ is finite-dimensionai

computable.

Remark The theorem remains frue if dyls) = H{<jclt)de -
(4 dw(t) where (t)>C and is deterniniztic. The zr2of is 2 trivia’ |
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adaption of the one to follow.

To carry out the proof, we need some properties of the state

estimator x(t) = ECx(t)|F1.

Lemma 3.1 (Kalman-Bucy)

i)
dx(t) = F(t)x(t)dt + P(HT(t)av(t) ,  x(0) = x,
where
t
v(t) = y(t) - H(s);(s)ds
0
and P(t) = E[(x(t)-i(t)) (x(t)-;(t))T] satisfies

Oe
—
e
—
H
-
—
ct
—
©
—
ct
~—
+
0
—
ct
~
-
—
t
~—
+
()
—
ot
—

1
©
—~
(ad
—
-

B o)
—~
o
~
it

COV(xO)

ii} w(t) is a Brownian motion and Fz = F{ lup to sets of measure

zero) for all t.

Proof See, for instance, M.H.A. Davis [ 9,10 1. The process

‘At) defined in lemma 3.1 i35 called the “i:_::° -.: process, and
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it is the key to our proof, because it is a Brownian motion that
captures the information in y(.). That is, if f 1is a random
variable such that Ef2<°, then, by lemma 3.1 i)

E{fIF{} = E{f[Fz} and, hence, by the homogeneous chaos expansion,

we can write

Yy .
ECFIFY) = k (t) +

fz'l 3 9 )
; » .
021 jo J kp"~(a0y.205)dv 3 (op)dulay)

‘.. (3.4) f

By using the innovations process, we thus achieve an orthogonal de-

composition of any filter. But if f e 1 _, we can go much further.

p
Lemma 3.2 If ft s Lp’ the expansion (3.4, truncates at order p:
. n {t
f,o=k (t)+ ko (t,9) doi(s) +
t 0 s JO 1 i
n lft fcp-] 21 lp , 1]
+ . o J J kp (t,J], Op)
2.1"Lp‘] 0 O
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Proof: From the definitions of x(t) and

is valid. Now consider the process z'(t) =

By (3.1) and lemma 1 1)

[ E(t) 0 o—é
dz(t) = | H(t) F(£)-P(t)HT(£)H(t) 0 | z(t)dt
| H(t) -H(%) o_’l
a(t) 0 T T awr |
) [
+ 10 PIEINT() | o (s [
. | .
L 0 I 4L | 1'
fo) = (xg, x;, 0)

Thus z(t) is generated from a linear system with Gaussian inpuz and
Gaussian initial value and hence is Gaussian. We conclucde *hat
(xT(t), vT(t)) is Gaussian also, and hence “hat we may appiy tne
homogeneocus chaos construction to it. 1In Appendix 1, this
censtruction is developed for scalar processes, but it easy <o see

5

4 af Azorendix

{D

that the entire thecry remains valid if we renlac

by

A

m
w)

~
-~
“y
~

v

hY

)
-

s

3
[®

r

gan TN e Tt Tt e e
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Letting A = six,(s), vj(S)l 1<is<m 1<j<n,s <zt wecan

build from H the homogeneous chaos decomposition

2(a, A, P) =0® T
220

However, we can also perform the homogeneous chaos decomposition on
. . th
the process u(-), that is, if Gl(v) denotes the 2 homogereous

chaos of v(s), s < t,

L, Flp) = @ T
2=0 “
— P —
Evidently, G (3] € G, foreach 2z and f, = @ G, since 7,
©o2=0
is a polynomial 1in x(-) of order p. Since G 0 ) ¢ E;
P
and 6, - @ G, for k> p,
=0 *

But

P
Thus E{f.;F;} : ® Gl(vi as desired.

Ae shall 3730 need

= * - [y e -»,Wm@mw i P 3%




Lemma 3.3 Llet z = [z],"',zk] be a jointly Gaussian random veczor.

k
(i) Efzy---z ] = €z, €2,+--2, + J cov [z,,2,] §[ 1 z.] {
1 K 4 K jo2 12%5 23
1.. E e = v +-‘ . , . z' LY .
(i1) [z] zk] Ez, Ezk ) cov(zJ} ZJZ)E i3 Eka
+ 7 cov(zj bz, Jeov(z, ,z, )Ez, +--Ez,

1 92 33 dg g vk

where the sums are taken over all combinations of pairs in <7.-.k:

Precof These types of results are well-known; a gcod refarence is
K.S. Miller [34]. The particular form used here is that given in

Marcus and Willsky [31].

Recall again that when a multiple Wiener integral has

a separable kernel it is finite-dimensionally computabie. There<cre,
- 1oeeel
oy lemma 2, f, will be FOC 17 the kernels k. "(t,sp,--o.2 ),

r < p, of (3.5) are separable. Proving separability is thus the
strategy of the proof of theorem 1. We shall need one mcre lemma
that is a standard fact about linear stochastic diffarentia’l

equaticns.

g " - [y o R T At i AW P iy




N3

Here W(t) is a vector 3rownian moticn and A(%t) and B(:) are

niecewise continucus matrices of appropriate dimensicn. Then

- - \ - PR
SUZ(8)-E2(5)12(s -1 (5.

where 1“<sl denotas the indicator functicn of <{t<s: and

L P

Xl(t,s) and (.{%,s) are matrices of seonarazble functions.

Proof Let 3(%,s) denote the state transition matrix o Alz),

. d

is I (t,s) = A(L)a(t,s), :(s,s) = 1. Let

K(s) = Cov{Z(s)]
‘t
. ; . - VA o

One easily calculates from Z(t) = 3(z,s)Z{s) + j s(t,u)B{u)dwiu)

s

that
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dyoof ¢f Theorem 1* Ne C3an assume that ?t nas tne form
t Tp-l
i i ,
f o= 1 e V., PP { ~ (’:\...\( :\ R Yste: ‘3’\
. . | (O(t/’*[(c]) 4 \’p)xk K K ( p/dcp d"*[ 2y
¢ 0 ! P

Then ft has a finite expansion as in (3.5). The proof will consist

of showing that the kernels ki].. lr(t,c],-..,sr),rfp, of the
expansion (3.5) are separable. The idea is to use theorem 2.8 %0
express ki]-.. in terms of ft and vyt

kz]...lr L N - o .

r (t,99,.0053,) = ERREEN By, ey B

r 1 r
T
= 38;%%755; E{f:uL](:])...qu(cr)] (3.7,

for t>gy > Ty > > T The second aquality in (3.7) is de-

. . - \ v -
rived from the fact that wu(c) s r/ -measurable for 7 < t

-

IS

When the expression {3.8) for f, is used in (3.7), the resul=z is:

'kw‘...lr B o

r (t)Q])..‘Jr)
t (53-7 r

= ' L o & y R { { - / -
1o rolt 1 Tpt p)ocT 30, ELXr]“31)"'xr0‘sp))11(‘1)' ‘Lo

dsp'. ds1 3.2
*The jgea of tnis orooT is due to S. Marcus I* apoears in Marcus
Mittar, and Ccone [I01 5Sut with some 2rrors The  2rrors are

correctad ners,




Since (x(t),»(t)) is a Gaussian prscass, lemma 3,31i) may bde
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apolied to the expeczaticn %erm in the integrand of (3,3). The

resul® is that this term may be written as a sum oF products of the

following terms

and

Because v(-) is a Brownian motion, the last two terms are

identicaliy zerc. Thne Tirst two terms are separzdis Tuncticns of

(51,...,s‘D

this for cov[xk (s.),x

J
f 1< Jj on the rang

) on the range of integration 5725, ... 25 5 O see

0

use lemma 3.1 and the fac* that

.> . M > > s
$; 2 sJ . & Sy 2 S,z > sp ne re
maining term is
3 5 <
Zrovle 12) -~ = 2 i A ! o (Tl eiag /YT A
== covx, (s),m (2)] = &5 covix, (s}, ' [H{s) (x{s]-x{s) )2, 2s

(Mota: In (3.9) some of the subscrints have been dragped <cor

simplicity of notaticn.) Sincs

P

*he observaticn ngcise ~{-. i3

. 3 . P b e -
indenendent 2f the siznal x{', coule Is, -0 2 2 0 Thus,
/ A - - - s - .-
(3.9 = ocovix s AT e s - T T o
-~ i ‘-
E I S SR S Tre It it Yz Tiezis stncrazai:




T adet
LT T

system with 3rcwnian inputs. This systam may le ax

4 ccon-

RS

structed using the Xalman-3ucy resuit in lemme 3.7, Thus, using
Temma 3,4,

covlx.(s),[H(c) (x(z)-x(3})],]

]
—
A&

s
~
w
-
Q]
-
+

5 <2y

= -l' < c} '91 (S’C)-UZ(S’:)J

where UT and UZ are separabie functiors,

The end resuit of all these remarks is that {3.3) may be
written as & sum of expressions of the form
et ;‘Sp'l

e (

jO Yo(t)...vp sp)a1(s1)...xp(sp)£(:1)...2\: )

such that a<r

{ji,“',jp} c {1,-..,3:‘
and

O

Hpenighe et

To compiete the proof it is only necessary to show that (3.12) is
separable as a functionof (t’sl""’:r) , However, by agorooriately
adjusting limits of integration in (3.12) we can write (3.72, in turn

as 1 sum of zerms of the sor*

N ~z




Since (x{z£),v(

apolied to the
result is that

following terms

and

Because w{-)
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1

£)) is a Gaussian process, lemma 2,311} may be

axpectation term in the intagrand of (3,2). The

this term may be written as a sum oFf products of the

Exk.(si) , cov[xk'(s.
1 i 3o

3
= cov[x:;

is a Brownian motion, “he last two terms are

fdenticaliy zeroc. Tne first two terms are separadie functiicns of

(51,...,50) on

this for cov{x
> s, it i

Sl 2z SJ T ]

maining term is

-
o/

/
— cov[x, (s),v
ac <o [ AREE RS

(Mota: In (3.9

simolicity of n

indenendent of
/

ae 7l

cue Loty = 4

the range of integration 5128552 00 2 S50 <0 see
(550 x, <Sj)] use lemma 3.4 and the fact that

i 3
< j on the range S12 Sp 2.2 S5 - ne re-

[}
>~

7 = 3
()] 55 cov

+

n, (c1] (3.

) some of the subscrints have teen drooped ‘or

otation.) Since the observation noise ~{-. is

. o ot o - -
the signal «x{+, , cgv[xr\>),.zf-)] =7 . Trus,
= Ayl N rar M e 2 AR
39) "‘-3/!.\(,.“5/:'_- :(<\~ R S AR, o
Toov 2Tl L . i - .
TTouxtisy )l dstne solution 2 3 line:ir 3tschaztic

LU NS LTS Ao




such that, for each i, a.ziz,c ...,:r} , bis{sf-]’:T"°":p} ,

3, 23, > .., 28, , 55 23,1 <9, Note that {3.12) contains no
indicater functions 1, v » Using the identity
{s <c} -

b |fb ra
J g(s)ds ] g(s)ds -~ | g(s)ds
a 0 0

to write single integrals as separable functions of their upper and
Tower limits, it is seen that (3,13) will be a separable function of
(t’GT"':r) . Thus (3,12) and {3.8) will also be separable, since
they are ultimately sums of terms like (3.13)., It is worthwnile

ilTustrating the last argument with an exampie.

Consider
t ,.51 .
2 (=.Y3 (=~ .. .ds.d
;o C‘w(s])‘lz(sz)"l\'1“‘2\“2)Vs.l <5 ‘4-_525:2;“4“51
0 0
8y straightforward calculation, this eguals
r(72’5] Z] z
) I3 f} ! ! { N ] ‘ \: ! N :S-
3](31)32\32)_) j a1\s])a2(sz)d52ds] :1(51, AEPICEPEED
0 O 02 O
T2
= 31(:1}32(:2) ; : 11(51)32(52>d52d53 -
00
72 :1 :2
[e Ve T fe VA oL -
g Iz\sz,qsz ‘O‘]‘S] C.)T -‘-~ S- «J‘
wnich i3 zecarazis,
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CHAPTEZR 4 MULTIPLE STOCHASTIC INTEGRALS AMD NCONLINEAR FILTEZR

NG

r-e

This chapter applies the viewpoint of multiple integrai
expansions to the general filtering problem stated in the intrcduction.
First, the Kallianpur-Striebei formula is used in 4.1 to derive
a representation for the optimal filter as a ratio of two multiple
integral series. The integrals in this representation are formed
with respect to the observation process and have kernels that depend
only upon the unconditioned distribution of the signal procass and
that nence may he computed offline, prior to receiving any
observations. Secondly, we discuss the class of suboptimal Tilters
consisting of a multiple integral expansion truncated after a finit
number of terms. B8y combining the exact filter expansicns, the
multipiication formula, and change of measure, we Zerive kernel
equations for the kernels of the best rth order Tiltar of this ¢
Wde then treat the cases r =1 and r = 2 as examples and, using

the same technigues, rederive the <alman filter.

The filter expansion presented in 4.1 resembles ‘ormulae
obtained by Eterno [11] in his thesis. E*erno built filter
aporoximations by expanding the unnormalized canditicnal density in

- t

Toment or cumulant power series, and nhis expressicns, wnen iDCYo-

D

riataiy avaluated, nhave muitiple intagral intercretzticns.

(@]

ur axpansicn, wnicn can also be azplizac <o <ne cordiziznal Zencity,

<
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class of suboptimal filter designs.

It is worthwhile empnasizing that the stochastic integrals
employed in this section are taken with respect to the observation
process, and not, as in Chapter 3, with respect to the innovations
process. At first, integqration against innovations appears toc be
an attractive alternative, because the innovations are 3rownian and
so allow one to exploit the homogeneous chacs theory, theorem 2.6
for computing kernels, and etc. in approximating filters. However,
in constrast with Marcus' problem, the innovations are not easily
calculated for they require optimally estimating the signal h(xt)
(see the introduction), a problem of equivalent difficulzy <0 :ne
original cne of estimating an arbitrary functional f(xs,sit).
Integrals against the observation process, on the other hand, are wore
readily computable, but less easy to handle, since y(-) is not in
general Brownian, much less even Gaussian. y(.)-based intecrais c*
different orders are, for example, not orthogonal, making it difficult
to project random variables on finite order sums of integrals. The
technique introduced below to derive kernel equations for best Tinitz
order estimates addresses preciseiy this complicatien and provides
tools for exploring the probabilistic structure of multipie integrals
\

of y(%t) 1in more detail. Thus integrals of v{(%! can be aralyzed

and are more satisfactory for applicazions than integrils af the

innovaticns grocess.

~ M - . R N i




4.1 Filter Expansions

To fix notation, let us restate the general “ilterinc
problem and the Kallianpur-Striebel formula for the coptimal estimate.
{y(£){0 <t <7}, (x(t)]0 <t <T: and {(w(t)!0 <t < T are scalar
valued processes on the probability space (2,7,?), and h{s,x) is a

real-valued (3orel) function such that

t
y(t) = j h(s,x(s))ds + w(t) t<T,
_ (4.7)
€ {j he(s,x(s))ds? < =,

and w(.) is standard Srownian, indapendent of «x(.).

= :x \ y ]
Let Gt Fo v Ft and define PO by
@ " A
- - exp[-J a(s,x(s)jdw(s) - 5 h(s,x(s})ds]

0 0

Recall that PO is a probability measure w.r.t. wnich y(-) and x'-)

/

are independent, x(-) has the same law as under 7, and

(y(t),Gt), - 1s a Wiener process. B8y this last statement, we mean
[P

that w.r.t. PO. v(t, s a centinuous G.-martingale sucn tnat
“

- . 24 . . . . i - . - ,
;ngy(c)-y(s); Gei =t - st ingeneral, FIg .. lLaet < 1« 5.3
be a3 “inite variance non-anticinpative “uncticnal of <+ . Tor

simolicity, we snall in the sequel 2.wass zencze . «.,3-% v <

o - » SR A UL it U AL T4
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and likewise h(s,x/s)) by h(s). Then the Kallianpur-Striesel ‘crmu

=3 i
states
p = P s !’.‘I‘,
fr BUFGRIA -
EO{‘(t)exggf h(s)dy(s) - % j hz(s)ds]iF{}
) 0 0 (4.2)
t

Eo{exp[{ h(s)dy(s) - % J h

3ecause of its importance, we single out the exponential %erm in (+.2.

with the notation
ft (t
- 1 2
L, = ex h(s)dy(s) - = ' h"(s)ds]
t = el (s)dy( 2 1, (s)
ie {1 457 - t - d—p_ : : ~ !
It i5 well known, (Worg [481), tha: ;= g by 1s a Gi-martingaie on
O - [
(Q,F,PO) and
= - = 1 3)

dt, h(L)Ltdy(t), LO 1 (4.3) .

(4.3) is tne c¢rucial relation for what follows.

In order to state the main thecrem, it is convenient to

introduce “he functions

o

(t,59,°7+55.) = ECF(t)h(sy) - h(s ) n >
i ] n (4.4)
ko(sysrroys ) = Eih(sy) - -h(s )} n>l.

Note that in (4.2} the expectation operatas cn rancem variables wnich i
cepend anly on %he x{-) process, whese law i3 invariant uncer %he

change from 2 %3 ?O. “ence, we can also write

NENIE ,sq‘ = 536":,ﬁ’: oRIN |
. ‘
'y s
N e - - [ SR
(n Sq‘, ,Sn,' = '_c ok ‘ "\:q

. .
.
et - S - IIIELILD, 3 o w oot S M




Ancther useful procass s

rt or
h(51)..

-h(s L

dy{ eeady(s, )
rys AN ANAE

r+l
The existence of Lér), a muitiple stochastic intagral with
We now stat

random coefficients, will be justified shortly.

multiple intagral expansions for f,.
(%

Theorem 4.7

T I
1 2
(1) 17 20 nl(c)dal" < = and E0F3(2)(| hE(s)en) T« =,
0 0
r
N I r)/ e el r) FEAN
Lo(t) + 11(: (in) + :Oar(u)Lg FL
P n=1
"t r .
o)y oe )iy,
1 +n£]It (Kn) uO\Lt ‘Ft,
T -
[ .2 20 P2, -
(ii) 1 Elexs ' h™(s)ds] < = and E[f"{tjexp h"'s zs.
‘0 0
, s .(n),
aa0t) + ) 1)
: 0 ne1 ¢ n
It =
{n) )
1+ I It (kn
n=1

and the infinite series in (4.7)

&

{a

(93]

~

-~

[ S




Remarks 1. We call (2.6) the partial fiiter expansicn and ‘1.7

the full expansion.

2. The expansions are essentially series evaluations of the
Bayes formula (4.2). They work by "separating” the x(.) and y(-)
dependence in (4.2) by expanding Lt; y(+) appears only when integratad
in multiple integrals and x(-) is integrated out in the kernels. The

kernels, therefore, require only knowledge of the apriori distribution

of x(-) and can be computed offline prior to filtering.
Theorem 4.1 has the obvious generalization to vector valued processes.

The proof of theorem 4.1 requires that we handle integrals

(

r\
of the form L! / or
oo (sy)eeen(s )dy(s,) -+ dy(s;) (4.8)

wnose kernels are random, nct deterministic as in chapter 2. These
are easiiy deTined by itaration. For this, it is convenient to werk
with the measure PO, With respect to which (y(t),Gt) is a Brownian
process, so that we may apply the standard theory of stocnastic

integraticn, (see, 2.g., Liptser and Shiryayev [28]). Thus, i

s(t)_ is a measuratle, G.-adapted process satisfying

Vo . e

| I
Pl a7{sids < »_ =7, we have an inzecral sisiavis’ wizth a
h t |

) : -0
vyersicn sucn taat  2.. suD s(s,dyls) <« » =_1 {_iztser,

4 Te*eT o0 b

o L . B} 2,
snirvaver L2, . ne nYCoTnesis or -l - N~ s 2s < = 3 ThuLs

g KY PR o i vt s meiiobinuaiio BN
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enough <0 guarantse that {4.3) is well cdefined “or all orders r.
Indeed, »(t) = j h(s)dy(s) is certainly well defined, and, moreover,
0
T T ‘
2 . -
Poff hé(s)y°(s)ds < (sup y(s) 1) j h¥(s)ds < =] = 1.
. [0, 7] .
Hence ft ’ rt’51
. = | Ydr )
| hlsydulsydy(sy) = ) hlsyhlsy)dv(syidy(sy)
0 Qg0

is well defined, and we can continue in this manner %o all orders.

Similarly, by choosing a continucus version of Ly we can show

n(sy)-een(s by dy(s.imrdvisy)

is well-dafined.

We shall also encoun*er expressiscns of the form

K
L oa(s)dy(s)F
‘ O :

EL{
to\

+

P

<

and for these, the following "stochastic Fubini" theorem i3 usetul.

terma 4.1 Llet (b(t),7,) be a stancarz Wiener orocess and let ,
-“‘ - ’ . - ’ - . 1 . -
r; = 70b(s) s<ti (completas oy "uli sets 5. ¢ i3 oan
- 02 .
F.-3dapted orocess sucn Tnat I T3 15 x
[ -
©d




K t

- : ' b* !—-" - . ’

[} a(s)dbis) FLl = )5*:(S)r2]cb‘5)
.0 hd

Proof Liptser and Shiryayev [25..

Proof of Theorem 4.1 Parts (i) and (ii) are both consequences of a

multiple integral expansion for L_. Indeed, 74.3) implies zhat

¢ )
"t
Lt =7 + Jon(s)Lsdy(s) . (4.9)
Iterating (4.9), .
t £
= ? \ l ! A / YAgyia D
=1+ Jon(s)d/(s) I NRCILEIEEAERES
t t
L, =1+ | h{s)dy(s) = PR
t Jo /0
rsr-1
)oh(s]) n(sr)dy(sr) dvis.,
(r) A
+ Lt (4.10;
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The denominator, Sor 2xample, cecomes

. s
r s i n-.l
- i \
E.{L EF{} =] + z £ {! el h(s )...h(s )dy(s )---dy(s,)'F{}
O t L n=-l O "0 )O 1 n i [
(r)7 YV .y
+ gL (4.11)

T
The hypothesis E[j>12(s)ds]r < = of part (i) allows lemma 4.1 =2 2e
0

applied to the terms of (4.11), with the result,

. S
t n-1
Ll =1 ; j T en(s) n(s )idy(s )eeedy(s,)
E I = + PRPR gr Jeoe »ade evsdyi{s,t +
"t t- -~ 0* 1 n >/ n! I
n=1 /0 0
i (r)l _/\ - r: n/v + - (r)':y\_
:O"Lt ,Ft; 1+ néllt\xn) Sothy TR

A similar calculation applies to Eo[f(t)L

derivation of the partial expansion.

Formally, the proof of the Tull expansion Toliows by

setting r = » in (4.10). 7o prove it rigorously, we 7irst sacw

3!
- -t 2 - . .

that £ exp[! h™(s)ds] < » implies

Ja

N rt ;Sn-l
L. = .5 \poj Tim(1 = § oo (s])---hfs )d/fsn) cdvis .12
(5 \l‘@ n=~l ‘I C '1 O { i
(¥}
Cenotz %he “inite serias an =he right hanc size 29 2,02 o2y .. Then
\ . Bl

At i
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ot
(V]
-

==

\ S 2
dylsy qie--dr(sy) 1%

By employing the standard computational rules of (2.1) for stochastic

integrals, this last expression equals

| . s
s 9 i
| [ f 2 2 2
cee Eq[N™(sy)--+h" (s )Ls Ids, ,---ds
o Ig0 1 NTTs g
| provided that it is finite. However, j

; ';
@ 2, 2 2 | _

AN (s,) " *h (s )L ]
0 1 N S\+1
Sy+1
r £ h%(s,)-+h%(sy) exp[-| h%(s)ds] (4.13)
0 1 N ‘o
S
Eolexpl2] h(s)ay(s)1IF]
1
Aith resgect to Po,x\ ) anc y() are incesendent and v/ ' ‘5 Srowntin,

(SN+1
]

Hence, given x(s), s < s,}, (5)dy(s) is a Gaussian random /arianls

. . 0 Py \ -
with mean (0 and variance i h“(s)ds. Thus
/ O ‘
< oo
SN+ SN 5
€. laxp 2 [ h(s)dy/s) FX 7 = axg 2 hels'ds | 412}
0 g 51 ‘0

Therefcre, 2colying 71,74 <5 [1.°2°

v~y




(4.13)

]
=
r~
—
w
—
—_
.
.
.
e
—
wr
=
+
-
—
~-1 8
[
.
.
.
[4
o)
5]
PN
Q
—
.
3y
—~
G
o
Q
.
.
A
Q

; and hence
s SN
{ [ . r.2 2 2 .
conl BNl (sq)eeenT (s 0L LSy gt S
I h Q- 1 NFT TSyt TN 1
.t rsj-l
= E ; e EO[hZ(ST)' ‘hZ{ST)]dS," ds]
j=N+1-0 -0
T T
2 ; f 2, , .
= 7 ;T Eo{f e hZ(SI/" n'\sj}osj- ds, 118
J=N+1 Y0 o g
T,
Since I exp[l h%!s)ds] <=, (4.15) tends to 0 as N ~ =, ana thus

L., = m.s (PO) Tim A, for all t < 7. Lemma &.0 can ncw de invokec

for every order n, 30 that

\i \

f=Ys _ - - 13 IS A
r = ‘ms. Tim AV FL
lI-t‘ L0"3 t L

. Ny-'/‘
= m.s. 1im EO:At‘rL;
Ne-n "
Kl
N e - .n -
= M.3.4%., Tl - <
N - - i
M n=,




Finally, to derive the U (P) convergence, note that

E [dp ]2 = T IZ = EF X 'rThZ,F\'dST < >
9 dpo SomT Lexp 0 (345}
Thus
, v N g .
ElEgLL IFLT - (1 + % Lk )]
< :T/Z(dp )2 E]/ZEC roaielT ) s . -n [ \\]2
St (@, o RotteTid T T L e Ml
. = e (1‘ im ] ‘t{ KO E
Thus because of (4.12), EO[Lt:Ft] =L (P Tim (1 o+ ) spaRpll
Neree n=1 ‘

as claimed. T7Th

is completes the proof of theorem 1.1.

Pla,t F]) = €1 (x(t))}F{j cenote the ccnditicral

Tt &
distrisution of x(t) given the observation up <0 time <t.
T
s -r ;’,2
Co~ollarv If Eflexp ;. h°(s)ds] < =
/0
BT (x(t)) ¢ FIR(ET, (x(t))h(sy) -ehls )]
A n=1 t A n
pl.,tlFl) =
hd -
- .n .
+ v Y[ L)
1 . I \_W(S]) (s )




il

Y- ~ . = -
Y. (4.18) is ofien called the

for the numeratcr of p(x,t] .

unnormalized conditional density.

Theorem 1.1 immediately suggests a scheme for agpreximatin

w0}

filters, namely, truncaticn of the numerator and denominaZor series
; after a Tinite number of terms. The xernels of these ferms are
' gvaluatad off-line, and, i¥f necessary, approximated by separzblie
versions. Construction of the multiple integrals as cutpu*s of
| stochastic differential aquations in the manner of theorem 2.3, then
provides a finite-dimensionail recursive realizaticn cf the

approximate filter. _Error analysis of this method is difficult, even

fT

in the case E[exp j hz(s)ds] < =; because truncation cccurs in both
0

numeratar and dencminaior ¢of a ratio and pecause the errcr ferms ire

hard to bound. <Ine might 21s0 acoroximate the urnormaiized zZonciticre’

P




An alternative is %o discuss cumulant expansions

p(x,t{F{) = exp

>
e~ 8
O
—t
cf
P
€
3
—

Eterno [11] studies ideas like this in his thesis.

4,2 Best rth Order Filters

The most common and extensively studied suboptimal estimatzor

is, of course, the best linear filter. This is an estimatar

t

- f
Ff = + i V24
f 3, JOa](t,s)d/\s),

ct

linear in y(.), and satisfying
- :' 2 el .'M‘ + 3 \12
E[f(l‘)-'t] itgr(")-(b + b ('-,S,d_Y(S)/J

for all other choices of b0 and b1(t,s). The philoscphy of

applying nuitiple integrals naturaliy suggests that cne sesx bettier-

than-linear estimates by adding higher orcer muitiple integrals terms.

Definition 4.1

(i) Y _ =z ‘a{t)=a




(11) a(t) = Y is called the best r™" order ilter of fiel, given
{ (y(s) s<ty, if E[f(t)-a(t)]2 < E[f(t)~b(t)32 for t <7, for all

"

b(t) = Y.. The kernels aj(t) of a(t) are then called th

optimal kernels.

Existence of a best rth order filter is not immediaztely

guaranteed. a(t) amounts to the projection of f(t) upcn

v .(t) = {a(t)ja(-)<¥.+, and, for this to always exist, Y _[t) must
/i J ~

r r Ll

be closed under mean-squars {P) limits. Aan easy sufficient condition

is

—~
"
~—

Y

< =, then Y _{t) is mean-square closed

Proof Apply lemma 2.3 to observe that, under the hypothesis,

forn<n k= QZ(EO,T]n).

. t o
To find the best r h order filter, one must compute

the optimal kernels. Accordingly, in theorem 4.7 we show how to use the

multipiication formula and the filter expansicns to Zerive “ntecrs:’

egquaticns for the a3 (%), C <n < r. This reayires two cralinminary




2 \ 2 .
Lemma 4.3 Llet z,v ¢ L‘(Q,Fg,P). Then Z{z-f{z))" < :(v-f\t‘)z
it and only if E(z-;‘(t))2 < E(v-;‘(t))2
Proof %(t) equals the projection of f(t) onto LZ(Q,F{,P). Since
z-%(t)s LZ(Q,F{,P), the projection theorem implies
E(F(t)-F(t)) (z-f(t)) = 0
Thus
£ 2 _op(piren 4 ers 2618 L oc(f(eVFr e (motiy
E(z-F(t))" = E(z-F(t))" + E(F(t)-F(t))" - 22(F(t)-F{t)}(z-7(t),
- - 2
= E(z-7(2))° + £(F(2)-F(e))°
Similarly,
2 2 p 2

2t
T T
—(‘th(s)ds)r <=, E fz(t)(}Oh‘(s)ds)r < = . Then
- A (r) ey - 17 ,
:O {C(t)Eo,Lt !Ft,l 0 (4 ]
) .
. el EO{',.)Lir’ 2= 1.¢
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Proof From (4.11)
(r)y v _ - Y T on
£ YL = r - - 5 I
Bolly TiFgs = Boube Fid - n;]*t(kn)’

and, therefore,

(r) Y- | -
Eqle(t)Eqlly IFLr = Epe(t)E,[L, (F{]

rooa _
- Eoc(t)fl +n§] It(kn);
Since y(-) 1is Brownian under PO
r rot 'sn‘]
Tn = T ..’ - \
Egielt)l = TR IE = Gole) # T 1 oo censyuesy)
0 0
c ; 7
elh(sy) - n(s ) lds - -ds,
However,
- } - dP
Ele{t)Egll, IF1 = £c(e) o elt)
s
fft . n-1
= calt) # 1  ree e {8,850, 0,8 )
0 rlo Jo 1] g

Sy temma 2.3.

)

1t
cr ol

cr

]
O
)

ipplying (3.16b) and 74.20) in {4.19a) sieic

(4.19a)

P
=
—
(Vo)
o

-

(4.29)
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(4.18) is established in analogous fashion using a version of lemra

2.3 for egpressions flt) 12

£0r2(e) (] n?

‘0
T

Suppose now that E(f hz(s)ds) and a(*) e Y_.

(cy)s n < r, uncer the cordition

2r
r

expanding EO[Lt{F{] as in theorfm 4.1, we obtain

2
x [1 + Z I

By

Using the multiplication formula, we can then calculate kernels

gj (tssy,77,s§) such that

1 t

J . .
I (gj(b33]1 1S

- ,,(Zr)‘Fy‘

Indeed, Tor G < j < 3r, direct caiculation with {2.14) cives

- m*n=21, ~ . -
g, = I Ja (6)1. Oft) [k 1,
NI . m-1 m i n-i
(myn,1)cC.
J
C, = im,n,i'men-2i=7,i<min{m,n},m<r, n<lr:
- IR SR o220
hecrem 1.2 dssume I 1%735'dslC = 3apd T Ui atg
. A
< -

Eot\-t . t.’-

(1

1. 21a)

—————

it i o it
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[
O
o }

: h s .
a(t) is the Sest r"" order estimate 17 anc

gj\tasw‘;”’asj) = E{f(t)h(s])..'n(s)(= ’l'(tas'[:""s'))

for 1 <j <r.

Remark The equations (4.23) comprise r + 1 integral equations far
the r + 1 kernels aj(t), 0 <J<r. This can be seen “rom {&.23]
and the definition of () and will be illustrated explicitly in the

examples to he discussed.

Proof Because of lemma 4.3 it sufficas %o show (4.23) nolds i7 and
only if

: PYPRE Y / pU)

Ela(e)-f(t)]" 2 Elclt)-f{t)]

for all c(t) : Yr(t). Since

"M
[ )
(@)

T .y
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Thus, we will demonstrate (1.24). 32egin by noting :that

- (c(t)-alt))[alt)EyiL, I FLa-E (el 7)o
Ele(t)-a(t) Ia(e)-F(t)] = £ ¢ : =t

1}

M
[an]

-
—

O
—
(e

J-a())(a(t)eglL, AT - £ LF(e)L I FI Dy L (4.8 ]
Now usa theorem 4.1 (i) and (4.2%a) to evaluate the term

alt)eglL, 1FT - g lelelL, Pl

2r
_ =/ " ~ .Jr [ / -
go(t)-ET\t) L LbLgi\t/‘L’\t/; e
i=] LY J
J
3r .
5 -
o Tiles(el]
j=2r+l
'
e m (20) Lue o oLi2e s :
* a{v,cal-l .. T Zay - - L.
v} - - J -
This imolies, since s i3 Zrgwnian alclt. Ta | Tmar 1ifdzeces ce-ne
intecr:i’s ire Crircasnal w.tLT. Ta, ini TnaT, nencs,




i
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The last two terms of (4.26) are zero by lemma 4.3. Thus, it is

clear that (2.26) is zero iff

g. = L. 0<jz<r

This completes the proof.
The tachnicue 07 theorem 4.2 extencs tc cther grobiems as
well. Suppose, “or instance, that a ‘ilter {
_ P
at(t) = aplt) = IlMa.(s))
0 5yt J
i=
]
. . D \ . ‘ “h ‘
of arder g is available; a'l4) need not e “ha fest 2 sriee
fil=er. Lst ~ > 3, and, ratner %<nan ask “Ir “ne Zest 7" crcer
Fiiter, ‘et L3 saex tne  'hest - ! frcar ISovectint oL
2., Ihe Tean-3guare minimizing 1o 3ToTne Tl
o . b g .
R




1,***,7 are free %3 he chosen. Tefine the

1}
0
4

here a.(t), j
wher J( ), J

kernels gj(t) as before:

Theorem 4.3 Let the hypotheses of theorem 1.2 hold. Then alt) is

th . . . . , .
the best r crder correcticn to a'(%} if and cniy if

g.(t,sq, 7 r,s.) =E{f(t)h(s ) s )i, g+ 1 <3 < r.{2.27) '
J 1 J l J
ProoT As before, it suffices to show that (3.27) nolds i<°
Efc(t)-a(t)Ila{t)-F{t)] = 0
rooo.
for all c(t) = a' (%) + ¢ I{(c;(t)). 8y the same calculzations zs in
j=q+1 7 Y
theorem 4,2
Elc(t)-al{t)lale)-F()
- foy T o oy im g Y-
= Egilelt)-a(t)Ialt)g,iL, r{ - EylfltiL, P
- ]
= &30 1I?/cj—a‘)[go(t)-zg(:) - 411t[g‘<t)"‘ il '
J:qJ_ - < -~ = - -
sr "
- T oddgieneae s L I
=D p,- B A - hd - -
~ b S
= EE-PEL UORE T P RTT PR-FE SR N 5. IS 2




T T ki B maean T

Tnis equals zero 77 g. = 1, forg-1<: <r.

Remark Clearly, an analogous result nolds f2r the case in which an

. , ; . W r : . ; . \
arbitrary subset of <a is given and the remainder are chesen

~ j4j=o
as to optimize the mean-square filter error. Thus, if

3y J ¢ {j],"',jq} £ :0,1,--+,r} are given, then the ‘a.{t):,

J# {j],---,jq} are cptimally chosen iFf gj = 2, Tor every
)

N N i Rt

As a Tirst examplie of theorem 1.2, let us ccmpute the

ot
Py
ot
~——
1}
[e¥)

kerneil 2aquations for tne best linear astimate
t
[oa](t,s)dy(s). From (3.22),

t
go(t) = ao(t) + :Oa](t,U)E[h(:)]dc
t
.
91(t,s) = al(t,s) + f a](t,:)Erh(s?n(:ljd: = 2,0%,I0 s
-O hd

The kernel ecuaticns are then

ag(t)Eh(s) - 31(""5) +
f -

eliminating a,i:’ “rom the secsnd 2quatiorn,
-
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t
,
ao(t) T a](t,:)E h(z)lds = Z77%)
0 (4,22
t
a](t,s) + j al(t,:)cov[h(s),n(:,_c: = ¢coviflis),nls!
®

(4.28) is, of course, the well-known Wiener-Hoof type ecuation “or
otpimal linear fTiltering. Before examining higher -rder examples,

we will discuss the Xalman Tiltar,

4.3 The Kalman “ilter

Consider again the sigral-observation systam (3.1) in
which the state x(t) is a Gauss-Markev process solving a linear
stochastic differential equaticn driven dy Brownian motion, and
h(t,x) = H(t)x(t). The Kalman-3ucy theorem, summarizec in lewma 2.1

-

shows that the state estimator x(%) = Six{t' =/: satisfies the

-

equaticn

wnere ?(t) is a deterministic functicn. /see chapter 2 for desinizicns.)
Let #(t,s) be the state transition matrix of F{&} - Pt H (£ 2(t".

Then, the sciuticn oF {1.28) is
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and both numeratcr and <énc

general renresentation cbscures the Tinear szIructurz 07 x(%,. 7re

techniques Fcr apolying the excarsicn farmutae, snculc at G2ast Tncdle
methods for deriving the linearity o7 < % “-Im (1,330, In Tacs,
theorem &.2 can te parlaved inta a prso? o7 irs Kaiman-3.oy TiizEn

and we present this here afger a “aw Corme~~3,

One ccmmon proaf of the Kalman-2ucy tneorem nVIKES 10
stochastic iiffarantial equaticns Tor the conciticnal mements anEn
X("‘s = L\’\\ A - Vo= Vgt a R T Y R e r~a mATs AN

e ~(=) and n(t,x) = x, whers 3.%,; 13 3 5C3.3 Wnizn motien,
these are
A s N
n nin-1 .n=2 - =l o, f-
d (L) = 5 x(%: dt - Tx(%) x (s
Ddv(t) -~ <2025 no2 7 A
3nd a s milas dnSiniza tat oF coupies 2cuatiing trTIIoTt Tn2 lEnars
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not yield themselves to a direct solution. Rather, they require

additional information, namely, that (x(t),y(t)) is jointly Gaussian
énd that, hence, by limiting arguments, the conditional distribution
of x(t) given ({y(s)|0 <s <t} is normal. One can then conclude

that the conditional variance E(x-i)Z{F{] is a deterministic and so

effectively truncate the system (4.31) at n = 2. (4.29) follows
easily [see Kallianpur-Striebel [23]]. By contrast, the derivation

of i(t) from (4.30) does not involve knowing the form of the

il

conditional distribution, an object, that, in the general filtering

probiem, is not often in hand.

el 20 Ik,

Let us develop our proof of the Kaiman filter for the
simple case

dx(t)

dy(t)

db(t) x(0) = 0
x(t)dt + dw(t) y(0) =0

"

(4.32)

in which b(+) is a Brownian motion. We do this in the interest of ;

computational simplicity; the proof carries over to the general case.

- t
Theorem 4.4 x(t) = J a(t,s)dy(s% where a(t,s) satisfies the
0
Wiener-Hopf equation a(t,s) + J a(t,o)(s"o)do =5, t > s, (4.33) '

0
(s*o = min(s,q)).

Proof Since y(‘) 1is Gaussian, the set of polynomials in y(-) is

dense in LZ(:,F{,P), a fact presented in the discussion of hemo-
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geneous chaos theory in chapter 1. Therefeore, it suifices to show

that { a(t,s)dy(s) is the best rth

lo

T <r<a, It is true for every r, T <=and t <T that

order estimate for every r,

t
E[J bz(s)ds]r <= E bz(t)[J bz(s)ds]r < =, Theorem 4.2 thus applies.
0 0

t
That is, J a(t,s)dy(s) is the best rth order estimate if and only
0
if
gj(t,s],"',sj) = E{b(t)b(sl)"'b(sj)}, §=0,1,"+,r .
From (4.22)
go(t) =0
gj(t’sl’”.’sj) = J(a(t’ )O(t)k\]-l)(sl’ ’Sj)
+ (a(t, ')O(t)(kjﬂ)])(s],' ,Sj) J >0
Now
33t ) @ (e)ky )y, osy) = gp [ altes )
=7
Eb(SW(Z))...b(Sﬂ(j))
J
= ig]a(t,si)E{b(s])"'b(si_1)b(s1.+])---b(sj)} ,
and

(a(t, ) Ot} (kypy)y{syseeeusy)
t

= | a(t,2)Esb(sib(sy) - 5(s,) e .
,’0 { J

C ey —ee
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The kernel equations become

0 = Eb(t) (4.34)
t

a(t,s) + foa(t,c)E{b(c)b(s)}dc - E[b(t)b(s)] (4.35)

1é]a(t,si)E(b(sﬂ---!3(S1~_1)t>(siﬂ)“'b(sn)
t

. Joa(t,a)E{b(c)b(s])«--b(sj)}dc

- EDb(t)b(s)) "+ b(s,)] (4.36)3
2<jc<r

(4.34) is true by definition, and (4.35) is just (4.33). We now
claim that if a(t,s) satisfies (4.35), (4.36)] tis true for all

j > 2. This will imply that the equations for { a(t,s)dy(s) being
‘0

the best rth order estimate are satisfied for every r, and will
complete>the proof. To do this, assume a(t,s) solves 4.35, and

observe the identity

£00(a)b(s) -+ +b(s,)} =ii](a’si)E[b(s])---b(si_])b(si+l)"‘b(sj)]
(4.37)

(84.37) results from a direct application of lemma 2.2.

Now substitute {4.37) into the lert-nand side ¢f (d.EG}J

\

and use the Wiener-ropf equaticn for a(t,s;:
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[ e LoD

; 1a(ts5i)E[b(51)"‘b(si_])b(si+])"'b(sj

t
+ jo a(t,c)E[b(c)b(S])'°'b(5j)]d°

t

{a(t,s;) + joa(t,c)[c‘si]dc} E[b(s])---b(si_])b(si+])--‘b(sj)]

R e —

]
nes <

i=1

] ¥
Bl .

[}
B~ .

(s;7t) Elb(s,)+=-b(s;_1)b(sy,q)---b(s

i=1 !

E(b(t)b(sy) - -b(sy)]

SR, st o itelen

The last equality employs lemma 3.3 again and validates (4.36)] for

any Jj.

4,4 Quadratic Filters

In this section we treat best second order, or quadratic, i
filters as an example of the theory of 4.2. We first present the

optimal kernel egquations for this case and then show how they may be

solved. To guarantee validity of the discussion, we assume throughout

the hypotheses of theorem 4.2 for r = 2: ,
. .

.

E(}

hz(s)ds)4 <>




l
|
|

Deriving the integral eq%ations is simply a matter of

calculation. Let a(t) = ao(t) + f a](t,s)dy(s) +
ts 0
1

f I az(t,s],sz)dy(sz)dy(s]) be a quadratic estimate and let

B TSP,

gj(t,sl,"',sj), 0 <Jj <2, be the kernels associated with a(t)
in the manner of (4.21a). Thus, using (4.22)

go(t) = ao(t) + [a](t:‘)]]O (t)[k1]~l + [az(t»')]ze(t)[kzjz
91(tas) = 2, (,5) + ag()ky(8) + o (80T, @ (O)Tk,1y(s)  (4.38) |

# Lay(t, )]y O(t)Ek 1 (5) + [ay(t, )1, O(1)[ky1,(s) 1

95(t,5158,) = a5(t,sq555) + ap(thky(sy,s,) + [ag(t, )] O(t) [k 1(s;5s,)

+ [2;(8)]; O (t)Tk3]y (sq9s5,) + 2[ay(t)]y -

+ [az(t)]z @ (t)[k4]2(51 ,52) .

By theorem 4.2, a(t) is optimal quadratic if and only if

Ef(t) = g4(t)
EF(t)h(s) = gy(t,s) (4.39)
EF(t)n(sy)h(s,) = gyo(t,sq,s,)

Now evaluate aj, 0<Jj <2 in (4.39) using (4.38) 2na the

-

definitions o¢ ( (¢) and kj‘ The resuit is in its “uil

Zicwn
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ugliness,
t t s.I
£(t) = ag(t) + [ ay(6,)En(s)ds = [ [ ap(t.s),50)En(s n(sp)es s,
0 2 0 (4.40a)
EF(EIN(S) = ay(t,5) + ag()ER(s) + | a(t.a)Enlaln(s)ds
0
t t o
+ J az(t,s,c)Eh(c)dc + J f aZ(t’J]’GZ)Eh(cl)h(ZZ)h(s)dS
0 0°0

(4.40b)

Ef(t)h(s])h(sz) = az<t’51’52) + ac(t)Eh(s])h(sz) + al(t,s])Eh(sz)

+

t
a(t,s,)En(s;) + Joa](t,c)Eh(c)h(s])h(sz)dc

+

t
~YSh{~ - - -\ VA~
jofaz(t,s1,u);h(q)h(sz) - a,(t,5,2)En(2)h(s 1de

t 94

[

These equations deserve some elementary remarks before we set

~ o~ 7 { - = WA~ A=/

00

about solving them. First, the optimal kernels are all interrelated
in the general case. We cannot solve for a, and 3 independently
of knowing a, . Likewise, if adg = €y » 3y Ty are the kernels
of the best linear estimate, they will not, in generai te the Tcwer
order kernels of the best cuadratic estimate. Secondly, the

equations (1.40) can be used for other subootimal designs in the

soirit of theorsm 4,3. Thus, i¢ 3 and a, are civen, ana we

o —— -

it
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,'t
seek the best quadratic correction to ao(t) *
‘0
this will be found by solving (4.40c) for 3, in terms of a, and

2, (t,s)dy(s) ,

ay - The methods developed for solving the full set of equations
(4.40) will also apply to this problem,

To solve (4.40), we first eliminate 3, and a, to derive
an integral equation solely for 3, . 2, is easy to handle. Merely
solve (4.40a) for ao(t) interms of a, , a,, and the known
functions Ef(t) , Ef(t)h(s) , etc. and substitute this expression
in (4,40b) and (4.40c). To further simplify, use (4,40b) in
a](t,s])Eh(sz) + a1(t,52)Eh(s]) of (4.40c)., We thus derive

t t o
1
ao(t) = Ef(t) - foa](t,s)Eh(o)dc - JO . az(t,d1,UZ)EH(U])h(GZ)dUZdO]
(4.41a)
t
a;(t,s) = cov{f(t),h(s)] - JO cov(h(s),h(c)la;(t,0)do
t b |
] f Eh(a)a,(t,s,0)do 4
0
rt (01
- jo Jo covlh(s),h(oy)h(a,)]a,(t,3,,9,)doyds, (4.41b)

t O
: ay(t,s,,s,) = cov[f(t),h(s;),n(s,)] - [Ocov[h(s]),h(sz),h(c)]al(t,c)dc

t
jo[cov[h(s]),h(a)]az(t,szc)‘+cov[h(sz),h(:)]az(t,ST:)dc

é t 9

}o jOCOV[h(S1>,h(SZ),h(:])h(:

(4.47¢)
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(In these expressions, cov[x].---xrj = E(xl-Exl)---(xr-Exr).)

We have yet to eliminate 2, from (4.41b) and (4,41c), but
this requires some more notation and a bit of theory., Define the
operator R (t): L2([0,t]) - L%([0,t]) with kernel

r1(:’c) = cov[h(s),h(c)] by
t
QICHIORYCVUIORICINOES

Rl(t) appears in (4.41b) and (4.41¢c), In particular, (4,41b) may be

rewritten as
t

[14R, (£)T(a; (£,))(s) = cov[#(t),h(s)] - josh(c)az(t,s,c)dc
t 9
- jo JO covlnis) h(oy h(a,)Jay(t,0p 13, doydcy
(4.42)
and thus, solving for 3 in terms of as requires inverting
I+R1(t). Fortunately, this can always be done in an explicit way.
Lemma 4.5

t
N r
i) h(t) has a best linear estimate h(t) = ao(t) + } a](t,s)dy(s) ,

(@]

-

t < T . Uithout loss of generality, we take a](t,s) =0 for
0.

is invertible, and [I+R](t)]“ = 1-Q(t) where Q(t)

T>s>

> t
i1) IR, (t

)

is the integral ooerator with kernel , |

a(t,57,8,) = aq(s9,55) + a;(s5.5)
t




s
]

a1(sj,sz) + {0a1(s],c) cov[h(sz),h(c)]dc i4

=

= covh(s; 1028, 12T 3
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4

r ~
Proof E[J hz(s)ds] < » guaranteses that h(t) exists {lemma 4.2)
—_ q .

and, as in (4,28)

i1) follows from results of Kailath and Geesey (Geesey [16],

Chapter 3). These imply that, under the hypothesis

T
Jocov[h(s),h(s)]ds < = , which is certainly impiied by

E[[ h=(s) ds] =, I+R1(t) is invertible and its inverse has the

ngen form.

We now apply this lemma to sclve (4.42) for a1(t,s) .

t

a,(t,s) = cov[F(t),h(s)] - Jlroq(t,s,s) cov [£(t),h(c)1de

jt jt ( ENCPREN

- r'(t,s,0,,0,)a,(t,2y,0,)do,dc (4.,43)

0o Y2772 1222772277
where
. 1
r(t,s,37,9,) =5 covlh(s),h(sy)h(a,)]

+ 3 [alt,5,0,)En(o;) + q(t,5,01)EN(5,)] /

t
3| altis,9) cov Tn(s) i i) Jec
0

In deriving r' , we took advantage of the symmetry of 3, 2

symmetrize r' . Finally, we substitute (1.32) into (1.11c) to ce-
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az(t,s],sz) = F(t’sl,sz)

rt
j0[r1(s1,c)a2(t,sz,c) + ri(sy,9)a,(t,sy,9) ]de

t ;t
JO Jorz(t,s1,32,3],02)a2(t,c],oz)dozdc] (4.44)

where

F(t’slysz) = COV[f(t),h(S1),h(52)]

t

Jocovth(s1),h(sz),h(c)](covtf(t),h(:)

1)
— |

-

rt
- }Oq(t,31sz)cov [r(t),h(cz)]dsz)ds

rz(t,51s52s31732> = % [COV[h(Sl),h(SZ),h(Gl),h(J i

cov[h(s]),h(sz)] cov [h(:1),h(c2)]

[ -

t

{ ., .
1 COVEh(s]).h(sz),h(ﬂ); ro(t,m, T, D0
o

Ae have shown that it (ao,a],az) solve (2.40) then 2, solves

(4.44), Conversely, by reversing the steps of this derivation, if

a, solves (3.34) and a, and a; are defined via (4.43) ancd

(4.41a3), then 3y, 215 3, solve (4.40).

(4.44) is simoly a linear integral for gy Hcwever, *“he

middle term of (4.32), invelving a tensor contracticn between i,
[
and SEE is non-standard, and the usual iineir integral eguation

technicues 2o not directiy apoly., In what falicws, we will shcw ncw

- _1-..-4‘
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1

to eliminate the tensdrccntraction term to derive a Frecholm intagral
equation for 2, thus reducing the Xernel equations to a weli-
known problem for which methods of solution or approximate solution

are readily available.

It is useful to do this in a general context,

Definition 4.2. Let 3(s T,sz)s L2 ([0t1%) and Tet

v(87159,97,5,) e L% ([0,t]Y) such that v is symmetric in SpSy - The
operator I: L [O,t] ) - Lz([01t]2)
"t i't , .

y = i . g c,dc
(~C)(5152) LB]]G(t)[C]](S1152) + jO )OY‘S1’52’J1’C2)C‘ T’SZ)d 2 G}
is said to be of tensor :zontraction (T-C) type. The kernmel 2 can
aizo be used to define an integral operator on LZ([O,t]) , which ‘

we will denote by B8 , and, in fact, we can write

¢
]]O('- [CJ 1,5 = J

n

—
(]
O

—
w

~n

-

.
~—
~
—

(7]
—
~—
+

—
w
O

~
[72]
—

-
~—
~—
—_—

wy
~n
~

Remark: It is of interest to note that, while the second term of

T 1is the usual compact, Hilbert-Schmidt operation, the tensor

contraction term is not compact in general. Since compact oDerators

have finite dimensional eigenspaces, we can prove this by sucslving
~s 2\1

a 3 such that 1C-L‘([O ti%)e = 1Gf‘(t)cl} is infinite
]

dimensicnal. I% is easily seen that
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3(51,32) = z.j‘i(s]):;(sz) ’

where the 3 1 €1 <M<= are mutually orthogonal, wiil work.
1

=1

—

Then if {wi}i are functions orthogonal to Span{:],--,;'

Mo
M
Vo= 4 , ; " fo 4 - L
C(51’52’ 1_z][qa].(ST)bi(sz) +gi(52)p1(s1)] satisfies ¢ = 3, xt}c].
The space of such solutions is clearly infinite dimensional.
For a 7-C operator I characterized by kernels 2 and v ,
we want to solve the integral equation
- AZ / 2 1 \
c=F+¢ , FeL®{[0,t]%) (4.45)

which generalizes (4.44),

Theorem 4.5. Suppose that I-3 is invertible and

-1 e [Fa i 200m 12,
([1-8]7"5)(s) = ofs) + | 8 (s,9)9(o)dc 3" e L°(0,t1%)
0

Then, if ¢ = T¢ has no non-zero soiution, 1I-T has a bounded
inverse.
Proof Using (I-B)'7 we will derive a Fredholm egquation for <
from (4.43). Thus, suppose C = F + [c., From the definition of I,
we have

et

= - z) J)de '

[(1-8)c(sy,)](sy) = elsy5p) - | 3(sppaelsy o

ft

H

+ 3(51,:)c(s,,:)a:

[
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2y inverting I[-B8 and rearranging terms, we derfive

t
[(I'B)C(':Sz)](s]) = F(S],Sz) + j031(52,3)F(51,3)dC

t

t
+ j Y1(s],52,c1,cz)c(cl,cz)dczdc] (4.46)

Jo Ig ‘

where

Y](S1952301:02) = Y(Sl’SZ’G]’GZ) + 5](52,G1)3(51,32)
-t

(.1 _ 3
+ JOS (sz,n) (s],n,u1,32)dn

Now invert (4.46), to get

et ot

- [ _ (a A
c(s1,52) = F](s1,sz) + JO JOY3(51’52’31’52)C(C1’“2)d02d01 (4.47)
where :
£
F](s1,sz) = F(sl,sz) + JOS (sz,o)F(s1,c)dc
(5 8 o) TR (s,) * | 8 (5,00 F o4, )de, e
o B 1 orIlR(gsy) + | 37(s,07p)F 9y, 0p1de, ey }

and
. (e, )
Y3(S]’szsc]a02) "{](519323U]s32> + JOB (S]9H)Y](ﬂa52331:92)dﬂ

(4.47) is the desired Fredholm equation for ¢ ; if ¢ solves ,

¢ =F +Tc then ¢ satisfies (4.47), Conversely, if ¢ satisfies

(4.47) then ¢ = F + Ic . Analogous reasoning shows that ¢ = "¢ iff

w
ct

Lot
- - Voa O - - - Y4 —~ r,
c(s]!sz) = (A3C)(s1352) = ;0/3\)1,32,v]’uzlcwzdw] \4.48;

‘Q
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Thus, if ¢ = 7¢ has no non-zero solution, neither does ¢ = ?3c .
But F3 is a compact operator, and hence the Fredholm alternative
theorem implies that I-F3 is invertible., This cleariy implies that

I-T' s invertible also,

The statement of theorem 4.5 may seem odd because it does not
focus on the central equation (4.47). This is done to emphas{ze
that once the Fredholm equation is derived, we need conditions to
guarantee it can be solved, Stinulating that 1 not be an eigenvalue
of T provides just such a ¢ritericn. Further, the statement of
theorem 4.5 may be extended to & sort of mutant Fredholm alternative
for tenscer contraction operators,
Corollary. If I-AB s invertible and A 1is not an eigenvaiue of
[ ,then I-AT f{s invertible.

Proof. Completely analogous to that of theorem 4.5.

The equation (4.44) for az(t,s],sz) is of tensa contraction

type; in fact, we may write it

a,(t,51,5,) = F(t,57,5,) + [R{t)ay(t,)1(syss,) (4.49)

where R(t) 1is the tensor contraction operator characterized by

the kernels 6(61’02) = -r(c1,32) and
‘{(S] ’SZ’GT ,0'2) = -rz(tis'l ,52 a:] ’32)

Theorem 4.6. I-R(t) 1is invertibie and az(t,-,-) is the unicue

solution of




- 106 -

= F A {

az(tas]asz) = ](t,513521 ; j
where

F](t’51:52) = F(t!slysz) - Jo[q(t,52,3])F(t,S],UZ)+q(t,5102)F(t,O],52)]

tt
+ JOJ Q(t,51931)Q(t,52,62)F(t,01,Oz)dczdc}
0

t
Y(t351352301’02) =Y](t$s]:52301102) - Joq(t’S,U)T](u,SZ’:],cz)du
Y1(t’$]:52)01332) = - rz(t9$]’52,C1302) - Q(t’SZ,G])Q(t:S]932)

t
* f q(t,s,,u)ry(t,sy,u 0q,0,)du .

0
Proof From theorem 4.5, it suffices to show that I + R,(t) is
invertible and that 1 is not an eigenvalue of R{t). The invertibility
of I + R](t) is proven in lemma 4.5. The eigenvalue ccndition
is a consequence of the uniqueness of the best quadratic estimate.
For suppose that c(s],sz) = (R(t)c)(s],sz). Then aé(t,s1,sz) =
az(t,s1,52) + c(s],sz) would also be a solution of (4.44), and hence,
if aé(t) and a{(t,s) were defined from aé(t’51'52) via (4.43) and
(4.473), a

0
xernel equations. This contradicts the unigueness of the sest

(t),ai(t,s),aé(t,s],sz) would also satisfy the cotimal

quadratic estimate. The definitions of F] and v Tollcw from

e a ea i a s e
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the proof of theorem 4.5. Finally, note that if + denotes the
integral operator defined by v, I +y 1is invertible and hence (4.51]

has a unique solution.

We have thus reduced the complicated kernel equations (4.40)

to a simple Fredholm equation which can be solved by standard methods.

Moreover, we can achieve a similar result for the problem of
determining the best quadratic correction to a linear filter, which,
as previously mentioned, requires solving (4.40c) for 35 in terms
of a, and a,. Again, (4.40c) is an equation of tensor-contraction
type for a5 and the tensor contraction kernels are the same as in

(4.44):

az(t,sl,sz) = [Ef(t)h(s])h(sz) - ao(t)Eh(s1)h(sz) - a](t,s])Eh(sz)

(t
{
!

- a](t,sz)Eh(s]) - a](t,s)Eh(c)h(S1)h(sz)dc]

0
t

r ¢ e} ~ .
= Jl [r](sz,o)az(t,s],c) b r](s.[u)az(t,sz,v)]d«
0
t a4
S I ICA IR LICA PR WO ER T
g0 )

NMote that this methcd does not succeed in solving the

optimal kernel equations recursively. Rather, t 1is fixed through-

cut and the relevant operitors are defined and inverted ¢n

2, oz . .
L8(00,57) o L2([0,81%). At 2 ifferent time ', <he entire
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pracess would be repeated. A recursive solution would use

az(t,s],sz) to construct az(t+dt,s],sz).

An important problem is to determine conditions on f, n
and the signal process x(°) such that a](t,s) and az(t,s],sz)
are separable, for in this case the filter can be constructed with
stochastic differential equations (see theorem 2.3). This has not
yet been done and is fairly complicated due to the ccmplex marner

in which E£f(t), Ef(t)h(s), etc. combine to produce the kerneis

F1 and y of (4.51), the Fredholm equation for a,.
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CHAPTER 5 MNONLINEAR FILTERING PROBLEMS WITH FINITE CIMENSICNAL
ESTIMATION ALSZ3RAS

Suppose that a signal x(t) is defined by the stochastic

differential equation

dx(t) = f(x(t))dt + g{x(t))db(t)

x(Q) = Xq (5.1)
and that it is observed via
dy(t) = n{x(t))dt + dw(z) . (5.2)

As usual, b(*) and w(t) are assumed to be indepencent Brownian

motions. The filtering problem associated to (3.1) - (5.2) will

-1

be completely solved if the conditional distribution, P(x{t):zd: {),
A = {Borel sets of state space:, is known. A basic Guestion is:
when can P(x(t)eAiF{), as a measure, be characterizad by a finite

set of statistics propagating recursively in time?

Recent progress on this {ssue has come frcm several
directions. First, V. Beneg.[7 ] nas proved the following result
by probabtilistic methods. Suppose g = constant, h{x) = ix + 2, and
f is a global solution, [i.e., defined on all of R of

¢ 2 2

# f7 = ax” s bx o (5.3
- ;e s 3 S S =/ aaxz : sanci-
Then “he conditional 2istrisuticn 0F 2! jiven 72 "as i zensity
anich <an te 2xpressad ‘0 terms of 3 Tinite nurper 27 3t21isiY
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generated by Kalman-8ucy type filtering equatiors.

There is also a suitable generalization tc the case of vector

signals and observations. This result covers the case treated by the
Kaiman-Bucy theorem, (lemma 3.1), but it gives new examples of

finite dimensionally computablé filters as well. We will refer to
the filtering problems treated in Benef' theorem as the "SeneS

examples”,

Secondly Brockett and Clark [7 ], Mitter [35], and

Brockett [5 ,6 ] have suggested that Lie algebraic techniques

can be applied to *the nonlinear filtering prcblem. They show how
to associate a Lie algebra cf gperators, the sao-called estimation
algebra, with filtering models such as (5.1) and (5.2) and how the
Lie algebra structure bears upon the filtering solutions. In

particular, they suggest that wnen the estimation aigebra is finite

dimensional it may be possible to compute conditional densities

finite-dimensionally. i

In this chapter, we will pursue the implications of Lie

algebraic techniques for exact, finite dimensional calculation of '

conditional densities. The first section will sketch the tasic
ideas of this theory, especially those that concern generating
fitter solutions from the estimation 3lgebr2 stiructure., As part
of this exgositicn, we will derive oy Li2 algesraic “a2chniques tre

e -

conditionai density for the 2rgdlem of estimating a 3rownian
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motion in white noise. The solution to this problem is, of course,
well-known. We derive it here not for the end result but to demon-
strate and expiore a Lie algebraic technigque, cailed the Wei-MNorman
method, (Wei and Morman [44]), that establishes the connecticn between
finite dim.estimation algebras and finite dim. filters. Further, a
rigorous derivation of a filtering solution directly from the algebraic
structure has not appeared in the literature for diffusion‘signals

and so we present one here. As another part of this treatment, we

will indicate connections between the Lie algebra strategy and the
theory of Lie algebra/Lie group representations on infinite dimensionai
vector spaces (see also 3rockett [6]). This will provide us insights
into the behavior of the filtering problems we consider. Also, Lie
algebraic theories of estimation are presently very inccmplete and

we believe representation theory will ultimately offer much to their
study. Finally, we briefly develop the Benes examples from the Lie
algebraic viewpoint, a possibility first realized by Mitter , who

. v
suggested it to us, after Benes' results became kncwn.

The remainder of the chapter is devoted to the search for
new examples that may be solved Lie algebraically. Secticn 2 presents
a case to which the methods developed in this section do not apply,
and it explains wny not. Section 3 contains the principal results

of the chapter. It first gives necessary conditions for a zenera’

class of vector process mocels to have finite dimensional 2siimation




m
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algebras, since these are the models that could possibly be solved
by the algebraic tachniques. By appiying this result, we are atle
to list all possible problems with finite dimensional estimation
algebras for scalar process models. We then ask the question: for
which of these examples does the Wei-Norman, Lie algebra calculation
work? Qur results are largely negative. Roughly speaking, they
indicate that only for the previously known examples gdoes the

calculation work.

5.1 Estimation Algebras and Filtering

Qur concern henceforth shall be with the filtering problem

stated in (5.1) - (5.2). Suppose that for all ¢, x(t) has a density

Y

a{x,t). Then the conditicnal distribution of x(t) given F{ has a
density
. E~iL [Fy, x(t)=x:q(x,t)
plx,tiFy) = 2% (5.3)
- ‘r !-
i —OLLt\F‘_J

This is easily derived frcm the XKaliianpur-Striztel formula. Call
the numerator of (5.3) p(x,t'?{). p(x,:!F{) captures “he
x-denendence of B(x,tL:{), that is, it equals 5(x,th{) up to

a random normalization factor, and it is, therefore, called the

unnormalized conditional densisy. o(x,tif’) is easier o werk
-

o et —

with tnan o(x,t'F{).

! 12 o ;
- > ~ bd s v .. - -
] Let L* = 73S Tx) - = Fl4) 2e the forwars generzcor of
3% o

/ - -

x(%,. Uncer accropriate requiarity conditisng, Iakad 1ITT,
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Pardoux [40]), the unnormalized conditional density p(x,tﬁF{) defined
in (5.3) satisfies the stochastic partial differential equation

dp(x,t) = L*p(x,t)dt + h{x)p(x,t)dy ¢5.2)
p(x,0) = po(x) = initial density of x(0).

The Stratonovich and white noise forms of (5.4 ) are, respectively,

dp(x,t)=[L*- %hz(x)]p(x,t)dt + h(x) p(x,t)dy (5.5)
and
2O < e T2 To(xt) +n(x)p(x,2)3(2). (5.6)

In (5.5), T denotes the Stratonovich differential. (5.8) is a formal
expression because 7(t) does not exist excent in a generalized

sense but it is useful in calculations. (Mote: As in (5.4) -

(5.6), fﬁe y(+) dependence of p(x,tiF{) will often be

suppressed for notational convenience.) Al1 or any of these equations
will be referred to as Zakai's equation, (Zakai [47]). For the Lie
algebraic theory, it is necassary to work with (5.6), since
manipulations invelving y(t) obey ordinary, rather than Itc
calculus, and the Lie algebra results to be adapted were developed

for deterministic problems with crdinary caiculus.

Tnhe precise question that we will study hers may now be
stated. When can p(x,t) be characterized by a finite number of
statistics propagating in time; in other words, when does p(x,t)
evolve on a finite dimensicnal manifold? The new approach o
filtering that we deal with nere is to lz2arn about 2(x,%; Hy

3 2quaticn. L2

applying lie alzebralie group methods <o lzkai
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Ly = L* - 5 h2(x)

O’h}LA denote the lie algebra of operations generated by LO and

and let
L
h using the bracket operation [A,3] = AB-BA. After 3rockett [5 ],

we cal] tLO,h:LA the estimation algebra.

The fundamental idea is that {Lo,h}LA carries information
about the infinitesimal behavior of p(x,t). In particular, if
p(x,t) evolves on a finite dimensional manifold, then {Lgah2 4
ought to be finite dimensional as a consequence of the interpiay
between Lie groups and Lie algebras, (Brockett [51). Thus, we can

-

search for finite-dimensionally solvable filtering problems by looki

for examples in which d1m{LO,h A <= Tnis will become clearer

in the subsequent discussion.

Example 1: (Brockett and Clark [7 ], Mitter E51]).

Consider the simplest case covered by the Kalman-Bucy theorem

(see Temma 3.1).

(5.8)
dy(t) = x(t)dt + dw(t)

where Xq is a random variable independent of the orocesses b{*%;

and w(t). For (5.8), Zakai's equation is

2
) g .l 3% 12 . .
T Pint) = (3 2 2 Yo(x,t) + y(2)xe(x,t)
(5.9)
p(x,0) = density of xg

ne correscencing estimation algebra is easiiy seen :2 he

_ _
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2
1 d 1 .2 d .
A=zSpan (5= - 5 X ,%X, 77 17
2 dx- I dX
142 1 2
Define A, = 5 —, - = x~. The commutation relationsof .\ are ‘
0 2 dxz 2
= 4
[AO:X] = dx i
i
(A, 7= x (5.10) :
0* dx )
d -
[E;’X] =1

We remark that A is solvable.*

Estimation Algebras and Solutions

In exploring tne interaction between finite dimensional

ikl

estimation algebras and finite dimensionally computable p(x,%t) we
must first confront the question: Given a finite-dim. estimation
algebra how does one intgqrate it to get a solution of (3.6), i.e.,
how does one determine p(x,t) from the algebra structure? This
problem relates naturally to the theory of integrating representaticns
of Lie algebras of unbounded operators on a Hilbert space to a

corresponding representation of a Lie group. We present some

* -
A lie algebra G s solvable if the series of ideals &, = [G,G], -,
l ’
G. =[G, ,,6_ ,],""" terminates at 7 for scme n < =.
n n-1’"n-1
I ¢G 1is an ideail if [I,5]
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ideas of this theory to motivate the main calculational methed,
and because, as mentioned above, we Find it a useful source of

concepts for thinking about estimation algebras.

Let G be a finite-dim. lie algebra and & 1its associated

(simply connected) group. Let H be a complex Hilbert space.

Definition 5.1

A representation T of G on H disamap T from G
onto a set of linear operators on H with a common, dense, invariant

domain D such that [T(x),T{y)] = Wi,y]1) for all x,y = G. Like-

wise, a representation <t of G on H is amap <:G - L(H) =
bounded Tinear operators on H such that <(g 92) = f(g])r(gz) for
g‘[ :92 ¢ G.

The problem of integrating a Lie algebra reprasentaticn

to a group representation is as foilows. Given a reoresentaticn

of G on H, when does there exist a group representaticn < of G
tx T N T .
such that <(e ") = et"x) Y X £ G? Here et (x) is a group
-/ : - - d tT(X) = T/ .
generatad by T(x) in the sense that I e 5 = T{x)s v » =D.

Suppose that x],'°',xd is a basis for G and that we have groups

etT(xi),i=l,a”,d- A method for constructing =< locally is %o
define _

U SO it e o
Fermally, this can Se made o werk, iF <he orcerztor identity
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tr tX{

] n b .
. = [adxj] Xe

®
ct
><
Ca.
>
n
8
-

—
I (~)

n

holds for Xj = T(xj), 1<J§, 3=zd. (Flato, et al. [12]).

(I) will be of chief importance.

The procedure recalls the Wei-Norman [44) technique fer
solving differential equations. Let us develcp this formally for

the above situation.

Suppose that in H we want to solve the eyolution

equation
dn . .
-d'f = X]D + U(t)/(zp (5'2)
which is similar to Zakai's equation. We try a sclution in <(G):
g, (t)X g.(£)X
p(t) =e | oo @ oy (5.13)

For this »n(t),

Is
i
Wy .
-—
~~
o
~—
><
-3
i)

. g1 (t)x
+ggltle T

From (4), for 1 <1, j < d

*[30A78 =

[ ]
I
L
1.4




(]
L
-
1]
he~—100

3

and applying this repeatedly in (7),

ala

o
(83 ]
=
w
=

= Fi(g(t),a(t))X;pte - +F 4(g(t) ,a(£) )X P (

for some non-linear functions Fi of g(t) =(g](t),"',gd(t)) and
g(t). For p(t) to solve (5), Falg(t),g(t)) =1,

Fz(g(t),g(t)) = y(t) and Fj(g(t), g(t)) =0 for j > 2. Solving
this set of equations (locally in t) for g(t) gives a local

solution of (5).

We will use this method to solve a filtering problem, but
first we present a few more remarks onlie algebralie group
representation theory. The heuristic jdeas contained in (5.11) and
(I) have been workad into a rigorous theory by Nelson [37] ard
Flato, et al. [13] for the situation in which G 1is represented
Dy skew-symmetric operators and <+ 1is required to be unitary (i.e.,
to take values in the space of unitary operators). Their results
involve heavy use of the notion of analytic vectors (Neison (37 ]);
see appendix 2 for a definition. In their theory =< will exist
if the algebra domain D contains a dense, invariant set of vectors

analytic for each element of a basis for T(G). Conversely, if =
exists there is a common, dense set of analytic vectors for the whole
i

lie algebra (see Fiato, et al. [127). Further implicaticns of the

theory are revealed in the following examples,wnich 2lay 31 rale in

R s a2 A
4 - » L A a0 e




the later discussion.

Example 2 Let Ay = = ix, %;,-i} and specify jts domain as

n
[

rapidly decreasing functions

"

@ , +
{p ¢ (IR)15upr63ax;)(x)f <=y a8 ¢ Z:}
X

AN is then a representation of the so-called Heisenterg algebra cn

LZ(R) and it does generate a Lie group on LZGR). t is not

important here to present this group. However, it is interesting

to construct a domain of analytic vectors for Ay because this
involves the second order operator AO = %(%;)2 )2
¢ 1.2 . .

AR which arose in the estimation algebra & of example 1.

C -
; 2( ix
1
2 dx 2
Indeed, it turns out that A, on L7(R) has a discrete spectrum

0
{ @ , i / S - + {1 ‘r& i
'kn}n=1’ \n < 0, 1im \n =, Let o n= be the corresponding
n—>w
eigenvectors, and define

0' = { ] aiiN < =}

n

—

D' 1is a dense invariant set of analytic vectors for AO and A,

It is easily seen that D' 1is also a dense set of analytic

vectors for A of example 1. !
- 2 d CERY o PR
Example 3 Let AZ = {-ix, 3o -1t be a representation of the
. 2/ + : ; : 2 ‘L\ . -~ "'\: f
Heisenberg algetra on L™ (R ) with domain CO\R ) = T:eC (R )3 nas
+, . . .
compact supoort in R ;. In this case, 2 unitary reprasentaticn -
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generated by AZ does not exist. The reason is that i %; Will
not be essentially self-adjoint on CSGR+) (see Appendix 2), and,

by a theorem of Nelson [37], this precludes <. Nelson [37] alsc

2 2
shows that % Q—i - % x2 = %(g—) + ]?(-ix)2 will not be essentially
dx + * ® +
self-adjoint on ("(R") and that Co(R’) will not contain

a dense, invariant set of analytic vectors either. We shall observe

analogous behavior for the filtering problem studied in section 2.

We will now adapt the Wei-Norman method of (5.12) - (5.1%)

to the solution of (5.9) in example 1. The first step is to

tX,
associate evolutions e ' to the elements Xi of the estimation

algebra A. However, for A, the situation is considerably more
complicated than in the theory of representations by skew-symmetric

‘operators. It will no Tonger always be possible to generate

groups with the elements of A, or to insure that the evolutions are

bounded. Nevertheless, we proceed with the most natural definitions.
tA
Cefine (e Oltzp} to be the semigroup associated to AO by

solving in LZGR) the equation

G(t) = Au(t)  u(0) = ¢ LER)

It is well-known that ’

-

tA, ,
(e @HM=JMawﬂﬂww t>0 (5.16)

-

c =172
G(x,y,t) = (2=sinnt) /

- ‘ 2 2. . -
expl- =~ (cotnt) (x"+y") + xy/sinnt’
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Similary, define
v
(e™4)(x) = ePo(x) t :R
5
(e ""9)(x) = p(x+t) teR .

As in (5.13) let us try to solve (5.9) by the expression

d
g, (t)A, g, (t)x g (tigx g9,(t)
] 0,72 REEEI

w
—
~4
——

D(X,t) = [e pO]x ( .

where the gi(t) functions are to be determige?é)XOne may certainly
raise objections to (5.17) -- the operator e is unbounded,
g](t) cannot take negative values -- but these will be cleared up

as we go along. The Wei-Norman method will allow the values of
gi(t) to be calculated if (I) holds for the elements of .

This requires, for example, that

tA tA tA

e Ox¢ = (cosht)x e Op + (sinht)%; e O? {5.18)
tA tA tA
d . 0 d 0
e 0 ek (sinht)x e “» + (cosht)af e s (5.19)
and
d t t '
otX %; v =g e X¢ -te x$ . (5.20) !

The right-nand-sides of (5.18) and (5.19) are derivec from
{1) by using tne identities

, -2n
r AL
fad Ag~ £

VoA
T, uw

R

—_— ' \
*This s0ives U <, =




x 12n+1 _d
[ad AO] X ® 3

which follow easily from the commutation relations (5.10).

Lemma 5.1

(i) (5.20) holds for every $ ¢ C]GR)

8 ax ]

(11) Let V = (o(x) = x"¢" *u(x)|3,aeR,0 ¢ L

tA
(e %) (x) = [ 6lxoy.talyley

R

exists and is infinitely differentiable on {(x,t)|t>0:. Further

m+n tAO fc em+n
:m (e el = o G(x,y,t)a(y)dy (5.21)
3t ox 3X
3 tAO tAO
and for t > 0, 3T (e “s)(x) = (Aoe 3)(x) (5.22)

(iii) (5.18) 1is true for every & = V¥, (5.19) for every 3 = V

such that &' ¢ V.

g (t)x 893(t>§; 3(t)

] e Py ¢ v

Remark If Py € L' (R) then e

and hence p(x,t), as given by the product of evolutions (5.17), is a

1

well-defined function in L (R).

Proof (i) is an elementary calculation.

{i1) can be derived easily using the axpiicit form 27 3{x,y,%'.

The crincipal observation %0 make in coing the calculaticns i35 <ha®

. o . PN -\ 2 ” d e
for ¢ > 3, G(x,y,t) will decay like e 7 as v = = 7or scme positive

(R)}. For every o =Y

o.
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(iii) The following calculation proves (5.18)

tAO .fx
(e “x¢)(z) = }G(z,y,t)y¢(y)dy

= d— &\ - \ = € ! T |

= {[dy G(x,y,.,{x=.i(cotht,x C(x,/,t)‘x=24 .
i |

sinht »(y)dy
d tAO tAO
= (sinht 9— e “s)(z) + (cosht){xe “3){z).

dx

-

To get, (5.19) integrate by parts

g 4 ., d fd o,
(e~ @)z} = |y, tigy olyidy = - Gy Gzy, ) a(y)ey
tAq : tAq
= (cotht)(e “xe)(z) - srrpeixe “2)(z)

tAO d tAO |
sinht (xe “9)(z) + cosht (5; e “o)(z).

To obtain the last equality, we used (5.13).

Let p(x,t) be as in (5.17). We will now solve for the \

functions gi(t) i =1,2,3,4. From (5.17)

A A ! d ’ \
X 3. (t)A,  3.(t)x gyit)s= gt
39 . - A e [ 9, Z 3V dx L
= G (tAgp = 5(t) e X e e e P
d . ood .
: 3 (2hy Sp(tixg it syt
- g3(t) e e e Pq

; c s
- 94\t)o 5.23
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By applying (5.13) - (5.20), one derives

W

2= g (t)Agpix,t) + Falg(t),g(e))xpx,t) + Folg(t),g(e))geplx,t] .

Q2

+ Fy(9(8),3(2))p(x,t) (5.24)

with F%s given below in (5.25). But if p(x,t) 1is to solve (5.9)

with p(x,0) = p,(x) we must require
0

é](t) =1
y(£)= FLa(t),a(8)) = dy(t)cosh gq(t) + gg(t)sinh go(t)  (5.25)
0 = F5lg(t),a(t)) = §,(t)sinh g;(t) + gs(t)cosh gy(t) !
0 = Fy(g(t),a(t)) = g4(t) - g3(t) gp(t) | 4
g}(t):O i=1,",4 ’

(5.25) may be easily solved. The result, written in terms of the

dy(t) notation rather than y(t), is

t
f &
g,(t) = } cosh(s) dy(s)
0
t
a,(t) = - j sinh(s) dy(s) (5.25)
0
t t s
g4(t) = J (sinhs)(coshs)ds - J gz(s)(sinhs)dy(s).
0 0
Finally, by substituting these expressions in {5.17) and usingc tne

tA
axplicit farm of the cernel G(x,y,t) of e 7, we lerive
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f: v =172 p-](t)[x-m(t)]2 -
p(x,t) = Jk<z,t/ e py(2)ez (5.27)
p(t) = tanht ¢
= 2 sinhs
m(t) = osht * j cosht ()

0

Let p(x,t;z) denote the integrand of (5.27) exclusive of po(z).
p(x,t;z) may be interpreted as the unnormalized conditicnal density
of x(t) for the process x(t) starting at x(0) = z. It is clear that
the normalized version of p(x,t;z) is a Gaussian density with mean

m(t) and covariance p(t), and this agrees with the Kalman-3ucy
solution of the problem. Though these calculations used the

y(t) formalism, they can be carried out, with some added
computational complexity, using the rigorous Ito calculus. Therefors

we have rederived the Kalman filter.

Remark In presenting the Wei-Norman technique, it was indicated that

in general it only gives solutions local in t. However, theorem 3.1
provides a solution for all t > 0. Thnis hapoens because the

estimation algebra A 1is solvable (see example 1). Wei anc Norman [d4]

g. (L)X,
show that for solvable matrix Lie algebras, if the operators e ! !

are placed in the correct order in (5.13), giobal solutions can be !
found. Without further elaboration, we obsarve that

axtends to the presant case and motivates gutting e first

in (3.17).




The 8ene$ Example

The kie algebra strategy is also able to recover the thecrem

of V. Beneg cuoted above. Consider the scalar case

dx(t) = f(x(t))dt + cb(t)
dy(t) = x(t)dt + dw(t)
£ £l 2 ax2 +bx +cCc . (5.29)

The Zakai equation is then

2
3 A 3 2. C e any
5% =iz i—z - %; flx) - % x“r(x,t) + y(t)xP (5.20)
3%
e - 138 12 .
The estimation algebra A = {5 7 - 3% f(x) - 3 X ’X}LA is acain
3x
. 132 12
finite dimensional. Indeed, if L. £z %= %= - 2= f(x) - = x5,
0 2 3X2 aX 2
N . d s 1
A= Span‘.LO,X,a - ‘.’I*
and its ccmmutation relations are é
- d _
[LO’XJ Todx T
[Lpog -1 = (a+))x + 3 (5.31) ,
d
f— - £ =7
- X ’X] b

These calculations are valid witnout restricticn an the coeficients

(S]]

a, b, and c¢. Hcwever, For jeneral 3, 3, ¢, [3.29) may nc: have 3

globai solution, in wnich case (3.31) is %0 ne intarcrates n “unc¢zizns
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wnose domains ara contained in the region where ¢ 1is défined. we

w111 explore when (5.29) nas global solutions in section 5.3.

We could now try to solve the Zakai equation (5.30) by

y .
g;(t)Ly g (t)x go(t)z— - £ g,(t) :
e 1 0 o 2 e 3V Tdx e 4

p(x,t) = ( po)(x,t)

However, it is simpler to first rewrite Zakai's equation via
a simplie transtormation that compares to the gauge transtormations

of quantum physics. Let 2z ¢ R and define

X
F(x) = f f{s)ds
>
If gq(x,t) = e F(x)p(x,t), a substitution in /5.20) demonstrates
that
2
39 .12 Iry 2ingeellg & wlE) (5 32)
- 3 2 s{{at1)x+bx+clla + y(tixq (5.32)

15.32) is similar to the Zakai ecuation 7ar the

an

arcwnian signal exampie. Althaugh (5.32) is not the Zakai

equation for a filtering problem, let us define its Lie algebra oY
2

- - ?
operators as \ = {Lo.x}LA L0 = % -3 [(a+1)x"+bx+c].
X

- ’
L 1s {scmorpnic £0 L by the {smcrchism LO - LO’ X - X,

- [

—

[ves
[AS]

[+%4

[ is srivial to observe that ]

“
[
3
i
PN
(Y]
[}
a
(e
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Suppose that f s globally defined so that, in order to find
p(x,t), we seek a solution q{x,t) of (5.32) that is defined for alil
x ¢ R. Suppose further that (a+1) > 0. We can then solve (5.32)

by the method

1 d

91(t)Aoegz(t)x 993(t)g; 3,(t)

alx,t) = (e e Gg) (x)

The gi(t) functions will be slightly different from those calculated
for example 1 because of the different commutation relations between
Ao,x,%; and I. The resulting solution p(x,t) = eF(X)q(x,t) is
precisely that obtained by Bene$. Whether the same method can be

made to work for the case in which f is not globally defined is

an issue we will take up in the remaining sections.

5.2 Estimation of Absorbed Brownian Motion

(92}

This secticn counterPoints the successes of 3.1 Sy zroviding
an example in which the estimation algebra has finite dimension, but
in which the Wei-Norman calculation does not work. The signal in

this exampie is a 3rownian motion absorbed at a Soundary, anc the
associated fiitering probiem is very similar, cperator-wise, to the

problems treated in 5.1, B8ut it turns out that the wWei-Norman

metnod cannot proceed secayse the identity 1) Tails ‘or :ne

estimation 27cebra cperatcrs. The pheremcnoiozy oF this f3il.re is
1isCus3es in nAcpe 07 Znariactariling fthe estimaticn zizebras “Iir ownicn
the %3cnnizue <40es Jr 2Ces nCT wCr<. Tor tne 2x&TD.eS 31T ~inc
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crucial information is revealed by the algebra's behavior on the
eigenvectors of the partial differential operator L0 = |* - % h2
(see 5.6) of Zakai's equation and by the interaction between operators
and boundary conditions. The domain structures of the estimation
algebras are also more closely identified. An important role is

played by the existence OY non-existence of a dense invariant domain

of analytic vectors associated with the eigenvalues of LO'

Let b(t) be a Brownian motion, let Xq be a r.v. with
density po(x) such that po(x) = 0,x < 0 and such that Xq is
independent of b(t), and let = = 1nf{t{x0+b(t) = 0}. Consider the

problem

x(t) = (x0+b(t)) ]{t<r} (5.33)
dy(t) = x(t)dt + dw(t) '

x(t) is an absorbed Brownian motion with random initial value. The
distribution will now have two parts; an atom Qo(t) = P ix(t)=03,

and a measure Q(A,t) = P {x{t)zA-{0}) (for AC [0 ,»)) with density

a

q(x,t). Accordingly, the unnormalized conditional density of x(t)'

will have two parts:

- y" !
Palt) = Eglliy(t)=03tt Pt
and
- I ! ‘y‘i
PIALE) = BgTl () en-roste Tt

P(A,t) will have a density




"Tf,uﬂ

£
%
’

p(x,t) = q(x,t) EgiT . sexp [j (xg*b(s))ey(s)

<r
L]

0

t

J (xq*b(s)) dSJ t, x(t) = x}. (5.34)
0

o) —

Again these statements are all consegquences of the Kallianpur-Striebe!l

formula. Assuming differentiability, p(x,%t) will satisfy the

Zakai eguation

5 ) 2
: (gét - (% f‘z % Cp(x,t) + 7(t)xp(x,t) (5.35)
X
p(0,t) =C t>0
p(X,O) = po(X)

(5.35) may be derived formally as follows. L

[t]
ot

V= {f e CR)|f has finite Timit at + =} .

Let (T(t)f)(x) be the semigroup on Vv
generated by absorbed 3rownian motion. The generator of 7T/t) s

2 "ZICU

%.g_?’ with demain 0 = f ¢ O/ ¢V, f"(0)=C} (see, e.q.,

Lamoer*? [48]). Fer £ D, define

> <f> = Eng.x(-i)h¢ ..

o
(%)

Oy

T e S et Pring

e: * - N - oo g% rr.;*m Nwwﬁw




By aoplying the stochastic differential equations o7 “iiterin
Y

(Fujisaki, Kallianpur, xynita [13] and <unita [25]) one may derive

2
dct(f) = ct(%i——f fldt + :t(<‘.)d/’t\ (5.37)
X
for f ¢ D. By substituting (5.36) in (5.37) and integrating
2
14 ..
s.(5 g;g f) by parts, one finds

fO)r,(t) = | F( eplx,tiex
(O,m)

2
s o0 325 alater ax
(0,2) X
+ jf(() (x,t)dy{tldx
0,=)

Since tnis must nold for ail < ¢ D

. 13 | .

dP,{t) = 5 o3 Plx,t) 1 g dt

5(C,5) = 0
13 e mer

dp(x,%) = = — s{x,t)dt = xplx,s eyl '8.38°
& A

£
The wnita ncise version 27 (Z. I8 is ingeec .S
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In (5.33), let A, rather than AO’ denotsa
1 .2 1 2
?'i—f - 5 x~, to emphasize that the functions A acis on are now
3IX
2 + . . . .
cdefined only on R . The estimation algebra is

. d -
A - {A, X, dx’ I}

which, but for the fact that the domain of functions is different,

is the same as 1 in exampie | oF secticn 5.1. Acain, one micht hope

that p(x,t)} is solved by

i

(LA g(t)x 3,(t)4 S(®) |

p(x,t) = (e e po)(X), (5.39) :

once the various operators are properly defined. However, the ]

crucial identity (I) will fail in this case. The problem is the

boundary condition p(0,t) = 0. Because of this condition, etA will
tA !
nct be the same as e 0 of the previous section. Rather, to !

meet this condition in (5.39), we must require. (e

all relevant ;. A simple reflection argument on the xernel G{x,y,t)

tAO
of e (see 5.16) yields
(%) (x) = | GOy, t)s(y)dy
0
(5.40)
. . - - i’ 2 ~ l{_ i 2+\2\f’-40XV \
G](x,/,.) = vy exal- Z.Othbxx y ’-S‘H”{ETFF;"

If we try to prove tne anralcgue ¢f

- - <. . . . . S \\1,y.<w-m" r A




tA

tA

(e*xe)(z) = cosht(xe "9)(z) + sinht(.cdj_x. R

2)(2)

-]

+ J ¢__j§__ ~1/2 COtht(zZ+y2) e-zy/sinth(

Tsinht € y)dy.

9

The last term will not be identically zero unless o 1is, and hencs
(I) fails. The Lie algebraic calcuiation of section 1 to solve

Zakai's equation will then not work.

Discussion

In the above calculations, we verified or disproved the

crucial identity (I) by using the expiicit formulae for etA and e

tAO

It is desirable to explain the results at a more fundamental, cperator-

theoretic laveil, i.e., %o uncderstand now the closely related

estimation algebras A and A' dinvolve such widely variant behavicr.

Qur first step is to reprove the identities {5.18) and (5.19)
of section 5.1 by much more fundamental methods. Thnis proof will not
be quite as strong as that of lemma 5.1 since it will apply only to

restricted set of functions. Recall from example 2 of secticn 3.7 thnat

D' = finite linear cocmbinations of eigenvecisrs:

is a densa, invariant demain fcr X, L2t oy 2 0' be an eigenvect
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with eigenvalue . From the commutation relations (5.10)

d

rrad [Ao,x]w = on b o= XAY (5.41)
xo = [y Slv = 8o S0 - S5 00 (5.42)

By adding (5.40) and (5.41) we derive

= d__-l. - ) d_ b
(Gx * X = Ao(dx Fxdu - At %)

Since 0' 1is invariant under %;- and x, (%; + x)t e D' also. Thus

we conclude that (%; + x)% 1is an eigenvector of AO with eigenvalue

x+ 1. A similar argument shows that %; - x 1is an eigenvector with

eigenvalue X - 1. The following calculation now proves {5.18) for

tAO ) t
s = 4. Observe first that e “y = e" "y,

tA

8 J(%; + x)y = et(k+])(%; + x)uy, etc. Thnen
tA t
1r,d

e Oxa=eA0§[(d—;+X)w-(g—;-X)w]
21 at(a#l) 4 N - ORI B
=z¢ (R *Fxv-3e i
- t;\ dm Y 6d_,:;t'\.
= cosht x e "¢ + sinht i

tAO tl3

n
[ 9%
i)

= cosht x & ~.- sinpt — 2 7., .
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By linearity, (5.43) extends to all the elements of 0'. Thus, the
invariance of the domain D', which is also a domain of vec*ors
analytic for A, implies identity (I) after a direct calculation using
little more than the commutation relations. The development here is
reminiscent of the quantum field theory of the harmonic oscillation

or the construction of the free Boson field. This is not accicental,
because deep connections between quantum field theory and fiizaring

exist. (This was discovered and treated by Mitter [35].)

These nice domain and eigenvector properties of the 8rcownian
moticn signal case do not extend to the absorbed Brownian motion
problem, despite the isomorphism between A and A'. The root cause
is the boundary condition p(0,t) = 0, and the fact that this condition

is not invariant under %;u Indeed, we can see intuitively that

.

tA

e 'xo # cosht x etA

s d A \
3 + sinht = 8™ (5.44)

because, for general (etA%¢(O) = 0 and sinht(%; etAz)(x>

“H.
O

However, the fact that (I) fails 1is not apparent
directly from the structure of A' because the boundary cendition makes
no contribution to the definition of A'. We can rectify this
situation by more caretul attention to the issue of operator domains.
It is useful to think of ' as a representztion ¢f a -i2algebra

an a functicn scace Y/, 2nd in this a2iscussion Yr Wil sufTice oz




r"'—'—_—"————_—_‘ﬁ
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set V = L2(S), S = state space. Recall that a Lie algebra
representation required not only an algebra of operators, but also
a dense, common, invariant domain on which to define them, because

an unbounded operator is not fully specified until its domain is

given. Thus it is actually inadequate to discuss estimation algebras
without considering domains, and thus we attempt the more rigorous

formulation

Definition 5.2 Llet Dc V be a common, dense, invariant domain

of L0 and h. Then {Lo,h}LA D denotes the lie algebra of operators

generated by LO/D and h/D and defined on the domain O.

Remark Domain invariance insures that all brackets [A,B] of

elements of the 1ie algebra are again well-defined operators on D.

What is the correct domain D to associate to A' when
trying to solve (5.35) by the Wei-Norman product series (5.39)? Up to
now, the discussion of operators in A' has been formal since we did
not specify domains. However, we did find that A, 1in conjunction
with the boundary condition p(0,t) = 0, gives rise to the semi-

group etA defined in (5.40). The proper domain D' for A s !

tA

then that for which A!D' 1is the infinitesimal generator of e
For clarity, denote this infinitesmal generator by ﬂ . It is

easily seen that
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[aV]

x 15

D(A) = (6 ¢ LR [(3 2

x2ys L2®Me(0) = 0

@
><N|
noj—

Henceforth, we will discuss A dinstead of the less well-defined A.
Eigenvectors of A will again be important, and domain considerations
enter into their definition; ¢ 1is an eigenvector of A if

2
(%.§_§ - % x?)y = 4 for some xand ify(0) = 0.
X

Now, in analogy with Lie algebra representation theory,
we want the domain D of A' to be such that A!D generates
etA also, (in the sense that etA is the unique semigroup
s.t. lim 1 [etA¢—¢] = A¢, ¥ o ¢ D). At the very least this
t-0 ¢ - )
requires that D & D(A). Otherwise A|D will generate a different
semigroup or will have extensions generating different semigroups.

For arbitrary D, of course, it may not be possible to associate any

semigroup to AID.

However, the next theorem will show that the requirement
D C.D(A) is also problematic and it will lead us to a deeper

characterization of why the Wei-Norman method fails.

Theorem 5.2 Let D c.D(;) be a dense (in LZ(R+)) invariant

“hen D does not contain any eigenvectors of A

domain for

nor does i% contain a c.~te, invariant “cmain of analytic vectors.
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Remark It can be shown that AID has many different self-adjoint,
negative extensions. Thus there will exist many other semigroups

U(t) such that

Tim 4 [U()e-s] = Ao, W < D
t+0
We conclude that D does not have the structure necessary for

integrating the elements of A'.
Proof If ¢ 1is an eigenvector of A it is clear that 4(0) = 0 and
v'(0) # 0, for otherwise the unique solution of %¢" - % xzw - xp =0

0. However, if D ¢ D(X) is invariant under

(» = eigenvalue) is 4
A', it is at least invariant under %;. Thus if 4 ¢ O, $(n) £ DCD(A)

¥n which implies 4" (0) = o, ¥n. Thus

D& D(A),tslc @YY, 5™ (0) = 0, ¥n) .

It is immediately clear that D contains no eigenvectors of A.
Consider a representation of the Heisenberg algebra A"={-ix,%;,-i}
on D. As in example 3 of section 5.1, i%; is not essentially
self-adjoint on D and hence, by the theorem of Nelson [37] (see
Appendix 2) A" on D does not integrate to a unitary group and
hence does not possess a dense invariant domain of analytic vectors

in D. An analytic vector for ix is an analytic vector for «x

and vice versa, so 0 does not contain such a domain for &' either.

In short, the eigenvectors ¢f A, wnich in the Brownian

1
:
i
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signal example were the source of a dense, invariant <omain of
analytic vectors, are no longer invariant under the estimation
algebra. Thus if ¢ 1is an eigenvector of A, Ay = iy, it is

-

no longer true that (%; +x)y and (%; -x)w are eigenvectors of A
and hence the proof of (I) on eigenvectors by commutation reiations

also fails for the absorbed Brownian motion case.

In summary, when a dense invariant demain of analytic
vectors, in these cases provided by the eigenvectors of A  OF
AO’ fails to exist in the domain of the estimation algebtra, the
Lie algebraic method of solving Zakai's equation does not work. ‘e
shall see this same behavior repeated in examples presentad in the
next section. It is our conjecture that the existence of analytic
vectors for the domain of an estimation algebra will be 2 necassary
condition that a filtering problem with finite-dim. estimation
algebra also have a finite dimensionally computable conditionai

density. Further work on this has not been done.

5.3 Finite Dimensional Estimation Algebras.

In this section we seek to identify those filtering
problems that possess finite-dimensional estimation 2lzebras. We wil

restrict our attention to the class of modeis

cl‘ Ny ~ M
flxle) et + 5 dbls)

[y

dx(t

~—
"

4
(S]]

VIR o
AVXTN ) T CwLT, .

(s}
<
N

ct

[0}
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and we will assume that x(t) 1is an RM-valced process, yi(t) is
Rp-vaiued, b(t) is an m-dimensional 8rownian moticn, m > n and &

is a constant nxm matrix of full rank. Additionally, we will suppcse
that x(t) evolves in an open, connected set UC R", and that

f, h e C(U). As the estimation algebra domain, we will always take
CalU) = {5 ¢ C™(U) |supps is compact?,

a choice aveiding toundary conditions, but imposing no loss of
generality to estimation algebra calculations, since the algebra
cperators shouid be defined on a sufficiently well-behaved and complete
domain. The first result will present a necessary condition that
(5.45) has a finite-dim. estimation algebra. We then use this
condition to list all possible finite-dim. examples in the scaiar
version of (5.45), n=m=p =1, Finally we discuss in which cf

the scalar possibilities, Zakai's equation can be solved by the

method of section 5.1,

Conditions for Finite Dimensionality

The Zakai equation for (5.45) is

. P
BOGE) L ok,t) ¢ (T R, (09 (8))p0x, )
3t C je1 1 i
n 2 no. o]
SRR IR R rE RS SRR £.36:
i,j=1 R =107 i=)
A= 58

. P -
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Consequently, the estimation algebra is defined to be

A = {Lo,h] ).. ° ’hp}LA’C;(U)
The following lemma, which incorporates an important Lie algebra
calculation, is needed in the first theorem.

Lemma 5.2 Let ge C (U). Then Yk

k k ¥
[adL]g= Z D g(A, ,---,A ),.“—'.—.T———‘
0 Yy 2y 1 2 27 3%, 3%,

1 k
+ terms with lower order differential operators

[5.47)

h

In (5.47) 0%g(---) denotes the k™ differential of g considered

th

as a symmetric, k-linear function, and A2 denotes the ¢~ column

of A.

Proof For k = 1, a direct computation will show

n
= 39 3 L.l .5%q) - 9q.
[Ly.9l¢ i §=1 T Ass o + (5 tr (A-T%) - 73-f]

for ¢ ¢ CS(U). In the last term,

[ng(ez,ek)] ,

o
w0
1}

th

k standard basis vector

and




-
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For k > 1, the prooT proceeds by incuction. The Zezails wil)

not be presentad.

The next theorem gives the necessary condition for tne

model (5.45;].

Theorem 5.3 If dim A < =, hy(x), - -,hp(*) MuSE o€ polymomials

of degree < 2. More generally, if <{x; ¢ C7{U) is in M. 2(x]
must te a poiynomiai of degree < 2.

P @ . )
Proof Fix g(x). The sequence ‘[ad LO] 3i=g 1s containec in

A and hence cannot nave operatcrs of arbitrarily high crder.

Bacause of lemma 5.4, this implies that, for scme k,

n
[w]

k
0 g(A - )
2.] Lk

for all 29,0053, 1< iqseeest, <0, Since A s non-singular,

this means that

for all 1pames2y 1 < Lpscread S Thus g s polynomial of

The seguenca ¢f fynctions {aq(x)}
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g(x) -

[V}
O
—
x
"

-
'
-

[}
—
—~
=
~—
i

= [LLoaao(x}]a aO’\X)

Y]
—
w
—
1]

= [lLgea, 1 (0] 2, 1 (x)]

must also be in A\. Another tadious calculation shows that

an(x) = van_](x) A vTan-T(x)

If g(x) 1is a polynomial, then clearly {an(x)}:=o is a sequence of

polyncmials. We claim that

= Y -
deg an(x) 2 deg an_](x, 2 . (5.48)

To prove this, observe A > 0. Hence, there exists a matrix S

such that
7 , ) . .
SAS' = diag [x],- ,An],&; >0 1=1, n
1
so that
3 '] T/ ‘1 TT
X) = 7a xS SAS 7 X
a (x) =7 EEY (S77) 7 2, () '
1 )
= ] (7aq_](x,S )
'i:T : 1
- camd . - . C .. o
3ut Ta, .S N1l e 3 sjectar 3 scisnemiais, Tne hignest feiras
14 Bl
37 anizn il se (deT a_ ..« = 1. T gheariy Tilows Tromoats 7
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Now suppose deglig(x)T > 2. (5.48) will then imply that *the sequence
deg an(x) will increase without bound and so acmit polyncmiails of
arbitrarily high order into A. But this cannot haroen =7

dim A < =. Therefore deg g{x) < 2.

In the scalar case, theorem 5.3 may be used t¢c impose
conditions cn the drift ¥(x) and so to obtain n.a.s.c.'s for

finite-dimensionality.

H
-
-4
-4

Thegrem 5.4 Letn=m=p=1, G=1. Then dim i < =

(1) h{x) = ax + 3

(5.48)
Fre s ax2 +bx + ¢
.. )
(ii) h{x) = ax™ + 3x + vy, a # 0, and
(5.50)
o+ fz = - h2 + a(23x+s)2 + b+ S
(2ax+3)
or
Frafls o n? e axd e+ c . (5.31]

Proof Assume dim A < » and h(x) = ax + £. The function

-5
—
—
>
~—
}

[y [Lgn]] '

2 -
1+ X + 12-15" + fT!

is in .. Hence b5y theorem 2,

. 2 .2, o
roix) = ex” + lassT i - 9/2




Tor scme constants, &, 3, and 3 Thus
b
and hence ;
2 _ 2 , 2 ., - |
ft + f° = 3 ex +ax’ Fbx + ¢ (5.52) ]
Likewise
= r -
T'Z(X) [LO,LLO’rl(X)J] 48LO
. 24
= 2e(2ax+3) " + 2e[f'+7 ] +
NS P -
(2ex+a+a )[fr”ff2+(zx+fﬂ
is quadratic. 3ut, by substituting (5.52) into (5.83) we find that
. 2.7..3 . - L 2
rz(x) contains the term e [gjx . Hence e =0. Thus '+ % is
quadratic. Conversely, if f(x) satisfies (5.52) with e =0,
. d .
A = Span tLO’ X5 I Ik,
which is finite-dimensional.
- [ A 2 . - < A A L s
Next suppose that hix; = ax~ + 3x *+ v, = # 3. Again
r{x L h - 4x
(x) = [golLgsn]] - daty
= 2a[F'+7%] + L (2uxer) (o029 8] + 2an?
+ {2sx+3'hn’ ]
. !
15 a guadratic “unction Z{x! et z o= T+ FY . e see nat = !
4
. R IR . RERTT VS SR




satisties
2 4.1.(2 “]7I - 2h2 l2 ‘Q\"‘ . oAl __4\
az + 3\ 2ax*#3)z" = - 22h7 - {2ax+2)hn’ < ) . (5.54)
The general solution 2z of this eguation is

A

2(x) = = h2(x) + Qp(x) + —2—
(2ax+8)

where Ql(x) is another quadratic function solving

21Q1 + %(23X+5)Qi = Q(x)

I . - . .
and A(2z2x+3}7% is a solution of the nomogeneous part of {5.54),

If Q1(x) 7 u(Zax+s)2 + v, then by taking an appropriate linear
combination of Q(x) and na(x) we may show that x ¢ . I%t then

turns out that

[Lolbgxll = Qj(x) = 23a(2axs)’

is in A, But this must be quadratic and hence i1 = 0.

Conversely if Q](x) = 1 {2ax+2)” + u, then x» may be non-zero

and the estimation aigebra is

9 ‘ - . R
U= oSpan (L., (2xx+3) (2ux=2iSs - Dae{lux#2)ElL T
3 cx
- 2 2 2 .. A . :
I F + % =2 o n™ + 3¢ +0o0x =< anc J..«;, 1is nct oF the zbove

- N U ot




R R S E
\ = Span “LO,X 3 Xy Xc-x KTy ax Ty I),

This complietes the proof,

3 V - -~
Remark Case (i) compares to the Benes [ 1] exampies; a form of

(ii) appears in Brockett [ 6].

8y a simple transformation, we may extend this result to the

filtering model

(o
N
—
ot
~—
1]

f(x{t))dt + g(z(t))db(t)
(5.56)

dy(t) = h(z(t))ds + dw(t),

and h,f,g eC7(U), U dis an open interval of R,and g(z) > 0 for

z

M

U. Consider the differential equation

n
~N

o
o

L3 (x) = g(a(x))  3(0)

Let [ denote the maximal interval about x = 0 on which the
solution 3(x) exists. 35 maps I onto U, is infinitely
differentiable on I, and is invertible. These statements are easily

demonstrated from differential equaticn theory. Next let

F() = gray [F(3(x) - 2"(x)]

and suppose

37 apolying 1%2's rule, ore Fings shat 7 zlt) T Tt

.
o , s T et M&.J
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dz(t) = f(z(t)dt + g(z(t)cb(t) .

Hence, (5.56) may be replaced by:

dx(t) = f(x(t))dt + db(t) (5.57)

N . . I = l / _3___; 2{ AIRS
estimation algebra is iy = {5 ;;? g (t) - : P(z) - 5 h ‘Z)’h<z"LA’

2
that of (5.57) is 8y = {F 2 - 2 F(x) - L(nea)iheas, .
X i

-
g

If i:A2 -\ is defined by
(i[81v)(z) = Byea(x)

one sees easily that 1 is an isomorphism of A] and A2. Hence, we

derive.

Theorem 5.3

8
(&N
-t
3
i
A
8

i€f dim AZ < =,

Theorem 2.3 says <hat any “inice dimensional =stiTaticn

= - - - B MU il R T uﬁﬂ.ﬁl‘.I.l.l...llillhnun«MJJ
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algebra for the medel (5.326) with g(z) > 0 can be reduced by state
space diffeomorphism to one of the casas in thecrem 5.4,

Solution of Zakai's Equation

Which cases among those singled out in theorem 2, allow
a solution of the filtering problem via the method of section 5. ?
To answer this, it is first important to characterize the drifts f
solving the equations (5.49) - (5.531). It turns out that 7 may
explode for finite x, that is, the maximal intervai
U= (ro,r]) on which f can be defined may be only bounded or
semi-infinite because [f(x)| - = as x - bounded endpoint of U.

Despite this a signal solving

dx(t) = f(x(t)) dt + db(t)

x(0) ¢ U (5.58)

will still exist, but, in general only up to a stopping time, =,
at which it attains a boundary pcint of U, (Gihman and Skorshod
{ 17]). The theory of diffusions on bounded intervals must now
be applied to proceed further. It says that to specify =x(t)

for t > -, one must impose conditions that tell how the prccess
behaves at the boundary, i.a., whether it is abscrbed, reflectied,
terminated, or scme combination c? these three., 2Always, when

4

x{t) ¢ U, it is assumed =0 3cive ¥

N
(]
(e 9

The tpeorv 3750
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indicates that even if x{%t) dces net hit the boundary, so that
x(t) can be defined as a solution of (5.58) without additional

conditions, different process behavior near the boundaries can

occur. Whether or not x(t} attains the boundary and how it acts

near a boundary depends on the nature of f,

To study f and (5.58) we state some preliminary results
from diffusion theory. In our definiticns and statements we foliow
the exposition of Mandl [ 27]; the original reference is Feller

[ 12]. Let f ¢ CI(UL U=(r0,r1) and consider the operator

2
R R 4
527 Tzt K
let r ¢ (ro,r,) and define
X
c(x) =2 g f(s)ds
‘r
R of
u(x) = | dye cly) dz ec(z)
i -
¢X “y
\ ! el =
Jx) = | 2y eC(J) P dzoe c.2
i I




Definitjon 5.3 For the operator 3,

The boundary point n is
(a) an inaccessible, natural boundary if ;(r1)=a, Arj==
(b) an inaccessible, entrance boundary if ;(ri)=m, u(r, )<=

(c) an accessible, exit boundary if “(ri)<”v(ri)<
(d) an accessible, regular bouncary if u(r;),v(r;) < =.

Let ({U):={y(x),xel| v is continuous, lim u(x) exists and is finite,
X1

and consider the differential operation 8

on

0(B) = {w e Cc(U)IB 4 clU):

Lemma 52

i) If the bouncaries of U arz inaccacsidle then 3 on 2(3) generazss

a unique Markov semigroup on C(J)

i1) Suppose 3 has an accassiblz beundary. Define J'(3) as the set

of % ¢ 0(B) s.t. at a regular boundary r,

0 = pic(ri)-(-1)17i 1im e (x) Ax) + 2.8.(r.) '




and at 2n exi: scundary O = p;g(ri)+:13;(ri),;;;;>3 ,;;+¢i>c.
i 1 [t h
Then 3 on 2'(3) will generaze 2 Markov semigrsw on C 00,

Proof. Mandl [27 ].

Remark. The boundary conditions in lemma .5 ii) are called !

Mor2 general, "lataral"

jump *0 a point inside U, are possidble, but for such sigznals 2
eguation no lcnger holds.

For a dcmain with inaccessisie soundaries, 12t x{:;xaf
the solution of (35.58) withvx{O;xo) =Xy ¢ U, Then 3 o¢on 3(3)
generates (T(t)g)(xy) = S5(x(t5xq)) for g e CUU}. Construztion
Markov processes that correspond to the semigroup gererzzzd in

case of accessible Soundarias with lecal boundary ¢

faund in Girman and Skercnad T 7]

We shall now 2nalyze the ssiutions 7 of {5.4%.-{3.3

e X
terms of this <necry. Ziven 2 Function 7, et v = 2«2 7,
vice-versa, given v, lat f = v/v. Then f satisfies .3.3%,,
(‘ 31) ~tigpl. O] d 1y i s3+§c<ip
3.31,; respeciive.y7, 17 an only 1+ / 5aL1ST1eS
2

VAR SR E PO P S o) B

ar
||= -_2..-_'-’\ ,__2"_ :
T ) AERE EN
- ¥

canditions,corrasscnding fo having tne 2

on

h

rocess

«on
Yo




respeczively. Clezrly, singularities of f wiil arise 2t zeross of
v. The situation is summarized in the following Temme. Note nez
special attention must be given to (5.6C) because of the singularity
af the cgefficient at Xg = -3/240
I'a a4
Lemma 5. %
i) Suppose that ¢ is a solution of (3.%3) or '3.37) anc that 7

. . ] )
beccmes siaguiar at.xy. Then F{x) = + (1) as x-=xa "he same

X'XO v
holds true i< 7 soives (5.30) and x_ 7 2
o} 22

. . . - - ] . .
i1} If f is a solution (5.5Q0) and ¢ > - 7> then f can heve 2
solution on an interval with endpoint xj = %% and

¥ = 2 - \

i X) -/(-Xn i -4(1/ ) X")Xg

L
where 2l3-1)=c
.. - 1 - . .. , . .
i1i) If ¢ < - g, ¥ s not defined on an ntarval wiln endpeing g
or containing X9 '
Spagé it Lam ulaa = 2. Then wika, 2D Sroonnermwiioood B
v -

Tausz
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(ii) It suffices to consider the case 2 =0 and = =1, for which

Xg = 0, and
2
v' = (-h” + ax’ + b+ S3-)v
<2

If ¢»> - % 2{z-1) = ¢ has two solutions a < % < 1, and v has

saries solutions near zero

3 2 n
v, (x) = x ) ax, as £ 0
1 L .°n 0
n=0
3 E-)
2 - n .
= X X 0
vo(x) Lagx, by #
n=0
For each solution
%
£ = = * (1) , A—>20
i
Far 2 = - 1/d, “ne soluticns v 3re generaliy 37 tne f3rm
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v1(x) = x”2 Z a x" |
n=0 :
|
v2(x) = (2n x) x]/2 (7 a xM) + x]/2 Z bnxn !
n=0 n=0 X
Again
11
f-2x+0(1)

(iii) If ¢ < - %@ the solutions vy and Vs are still valid, but

now a, and @, are compl ex

a_:.;_a.-iﬂlx_ciq_‘f-

i 2

Thus since

—
S~
[V
2]
-—tp
~l
=
(2]
+
—
—
~
~n)
i
—
~of —
<
Y
O
+
—a
IS
=3
>

any real solution v will have an infinite number of zarces in any
neightornood ¢f zero. Since each of these zeroes will correspond %o
a singularity of f, f cannot be well-defined in an interval

-

containing C or with J as an endpoint.




From Temma 5.4 we can derive

Let f be a solution of any of the equations (5.43) -

(5.51) on U = (ro,rT). I¢ ro is finite and 1lim {f(ri); <=, o
X+,
is regular. ITf r; is finite and f(x) = <2— + To(1) (X*ri) r. s

X-\"i

an entrance boundary if a > 1/2, a regular boundary if « (-1/2,1/2),

- 1/2. If r; s infinite {+ = or -=),

and an exit boundary of =2 ;

| A

it is natural.

Proof For the finite boundaries, calculate o{(x) and w(x) and

apply definiticn 5.3. To prove that an infinits boundary is na*ural
it is necessary to know how f behaves at that boundary. 1% will de
shown later that f can exist in a semi-infinite or infinita2 domain
only if it solves (5.49). Suppose for instance that ry =+ = It
turns out that

ot 2 2
£' ¢+ f7 = ax~ + hx + ¢

whether either 3 >0 ora=0,b5>0,0r a=0,b0=20,c¢>0.
In any of thesa cases “(x) can grew at most iike x  as  x—-= and
froem this one can shew Timu(x) = += Tim v(x) = +=.

X+ X+

Let us take up the gueszion raised in the Tast :roof,

-t

(3.19}-0(5.51) nave solu“ions cn wnich kinds :f

which equations o

domains?




(8 1]

Suppose £ satisfies (3.30), (5.51) or f

and either a<Q, or a=b=0, c<0. If T is defined ¢n U=(ro,r]) and has

no singularities in U, then U must be bounded. If ¢ satisfies
Cael_ 2 C s . 2., A
f +f =ax"*bx+c and r; is infinite, Tim ax“+bx+c > G,

X=r

’roof. The proof applies the Sturm-liouvitie comparison thesrem

(see, e.3. Coddington and Levinson [ 3 ). Suppose © satisfies
rX
(5.31). Then v =exp | F(x) satisfies
e
VA (hz-axz-bx-c) v=Q
Since h is quadratic, for !x! large enough
2 ) ~
h=(x) - ax? - ox% -c > 1.
Hence, oy the Sturm-Liouviile comparison theorm v  mqus® have a zers

between any two successive zeroes of any solution of

Since 2 = cicosi + cysinx we see that v qust have a

Jnpounded <omain. Thus ©  zan be defined ~itNoutl singuia

only in unbounded domains. The sther 3tatsments arz >
The intzresting results Izntained in thsse Tamnm
: hat ne Sinfta scunzary 3rising from o3in T ossiving

. . I et tes DR IR
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ar (2.37) #i11 ce natural and (2) that finits boundarias will always

Se 2ncountared, axcast possibly, with (3.43). It will turn out tha:
tnese norn-natural boundaries will generats non-trivial boundary
conditions for Zakai's squation. The general implication is then <hat,
just as in %he absorbed Brownian motion example, these boundary
conditions will interfere with the attempf to apply Lie algebraic
tachniques. It would then follow that for scalar-signal modeis

of the type :3.33) only “he known axamplas of 3ene¥ can 5e trezted

by the method of ssction 5.1.
It is difficult to prove this statement in such sweeping

generaiisy. First, there is a probiem of formulation. IFf x(*

N
’

solves:

O
3
[¢9]
—h
-

nize domain J with regular accessidie boundaries, it is nc
longer possibiz %o characterize the conditional distributicn just oy
3 density o{x,2) an U; one must also consicdar *he conditicnal mass

A
distritutions 2 (t) = £.:1, LR neral ioca’
fstributions ri\t) 9t {x(t)=ri; ¢ L or general ioca

ooundary conditions, we must solve a system of equations for the iriple
fa (%), olx,ty, ?r(t)), and Lis 3lgebra tachniques, if any, must ®

r
0 1
apolied %3 this system. Thus in ¢the anaiysis of Lia aligetrai

iD

O

tachnigues % foilow we ~i11 aveid the 3cc

(1Y)

ssisl2 hcuncary fise.
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Remark. For certain boundary conditions in the regular accessible
case the system (Pr , pix,t), Pr (t)) degenerates into just a

0 1
density eguaticn with boundary condition; if r; s pure reflecting,

ie., »:D'(B)only if =

X °1x=ri = 0, then Pr (£)=0 and

i

13— -f ) p(x, =0, 7t; if r, is pure absorbing, i.e., s = "(B)

iff Bg(ri)=0, the, 0 () = [ %; p(x,t) Jdt and p(ri,t) = 0, ve.

k=
X=r,
(see Pardoux [40 ]). Theorem 5.5 will hold for these cases, but we will

not work out the details.
Secondly, the case

£+ = -h

+ a(2xx+3)° + b + c #0
(2ax+8)" ¢ > -4
on an interval with x5 = -8/2x as an endpoint poses analytical

1
X=X
0

difficulties, Hoth because of the varijety of cases f(x) - X — X,

3

J

a 2R, to be anaiyzed and because of %he singularity

c ) 2

n fo+

5 In the interests of simplicity, we will not
2ax+3

treat this case.

From now on, we will be interested in solving Zakai's
equation for the groblem 2f fijtering a sianal «{%) solving 15.58)

under the assumptions:
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(i) h is linear or guadratic
.o - \ /= = !
(ii) f solves one of (5.42) - {2.351)
PP \ ‘. - -~ TR 4
(ii1) U o= (ro,rT; is the full domain of definiticn {4)
of f
]
iv) If ¢ soives [3.50) with ¢ # 0, ¢ > - 7> neither
endpoint e ecuals Ky = -32/2z
Frem the lemmas presented above, cne can conclude that if r is a
e L. 1
finite boundary, it is of entrance type, and fx) e ¢S
.',
X >~ r..
]
§
{ Zakai's equation for any one of these problems is:
}
3
i 2 "
b 3 \ (1 5 3 ef 1 Z . ’
i - = - = - 5 h(x): L)
)| 3T o(x,t) 7 T3 3 £x) 2 (x): pix,t)
53X
]
+ y(t)in(x)p(x,t) (5,52)
3 \ . - - aa
im (3 - 2F(x)) plx,t) = 0 ifr. is a finite (5.83) ,
X-r

{entranca} Soundary.
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i
g 30
;

R kT T L S

Ne give a brief, fcrmal derivation of this “or the case r.', ». < = .

b

For g = C{U) cefine

|
| A
0 (9) = Eaig(x )L FYr = | g(z)p(z,t)d
ﬁ t 0 /e Ty i 9(z)p(z,t)dz
: 0
f If g 0(3),
E
‘ do.(9) = 5.(Bg)dt + o (hg)dy(t) (5.64 a
i
(Kunita [25]). 3y integrating the term ct(Bg) by parts we zerive 1
1
do.(g) = { g(z)dp(z,t) dz !
Jr j
0 @
(rl :
= | g(z)[B*p(z,t)dt + n(z)p(z,t)dy(t)]dz }
Y‘O 11
1 il |
Y !
s 5 & Wgge W gl -
Ir0+
Y']—'
s(x) % - 25(x)Ja(x )]
*ot
2 . '
B* = %‘3—2- - z—- .:()()
3X ”

in orcer trhat this nold for general 2 : 2(3), we reauire

e eh - et i e feaan
oyt = 27k, 520 = 2 Calx,ticv’ s z.22




n
h
O

Tim g'(x)jp(x,t) =2 {
X7 .

i
Tim  g(x)[3= -2¢(x)Ip(x,t) = O (.57
3x
X0,
]
For g = D(B) one can easily show that
Tim (3= - 2f(x)ip(x,t) = 0
3IX
X>r.
i
implies both (5.67) and (5.66). When writing (5.65) with y(t) instead
of dy(t) one must add the Wong-Zakail correction term -1/2 h2(<) pofe)

3*. This proves (5.582) - (5.63).

Rather than work with (5.62) directly it is conveniant %o

invoke the "gauge" transtormation

rX

. | f(z)dz
eF(‘) = ell rc (ro,r1)

~f )
( = e]/2~(xl)

and write

-
F

p(x,t) = e MQ(x,t)

A calculation shows that

S
'un

~o] -

wh
(9]}
o

R PE . v, P v .
=fenT Ak, 2 oyl Can T

W

s
[RYEE
1)

3X




F(x) (3

1im e = - f(x)]q(x,t})=0 if r, is an entrance

X>r, * 1

1 boundary (5.69)

It is this equation that we seek to solve by Lie algebraic
2
135 1....2.2 .

methods. Llet A = 5 ;;? 2[f +f"+h"] and call {A,J}LA the
algebra of (5.68). {A,h}LA is isomorphic to {Lo,h}LA by the
map B -+ e F 8 e—F from {A,h}LA to {Lo,h}LA. This map also trans-

lates evolutions; that s if

etA-I
lim T I = Ae $ e D
t+0

then

FtA -F F
Tim e e e 1]y = Lisss = D
£40

Thus the lie algebra analysis may be carried out on (5.68).

The technique we want to explore is that of solving (5.68)
by

91(t>Ae92(t)X2. 94(t)Xy

q{x,t) = (e - qo)(x) . (5.70)

We place e first in this series because we need an evolution
that must, in general, satisfy boundary conditions. It is not usually
possible to do this with first order operators, and A 1is of second
order. Different second order cperators in {A,h}LA might be chosen

instead of A, but this will make no difference in what follows.
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The natural semigroup to associate with A s that

]

determined by the boundary conditions (5.63). We will define this

semigroup an LZ(U). Thus let

2
(

D(A) = {weLZ(U)} A wel® (W), ¥(r.) =0, ry an entrance

i
boundary? .

Assume r. s an entrance boundary. The condition w(r.) =0

i
does not look like (5.69), but it is in fact equivalent. Since
Av = 2 ¢ LZ(U),
| fx
Solx) = $a| e | eIl )es
XEr r

and ¥ ¢ L)

=
Since e'(x) v KX (X*ri) for some constant k we see that
1im er“) 9—-y(x\ = 0
ax
X=+r.
i
- :: / =/ = F X\
inus  1im e (<) [%; - Ty Tu(x = 1im e (x) g Wiy o=
X, X+,
i i
= Tim £ (x) =PJ(ri) = 0 ‘
X=r s

W& NCW 523%2 “he 7ain “necrem.

Thagrem I,

W

o PRSI - A - i
neooo. satisTy tag nynetneses ¢,

'Y
3
(&Y
wr
<

)
]
(@]
(5
193]

.- w ' . 3 TR L gt ML e T IR .'J




J is bounded or semi-inTinite
(i) -A 1is self-adjoint and bounded-zelcw on (A, and hence
- k4 tA H' - - L)
generatas a semigroup e~ . Also, A has a discrete sgectirum.

(ii) Let OC'(A) = {finite linear combinations of efgenvaiues cof A:

L +
etAh o # ZO ﬁT [ad A]n h)e“A@ for 2 ¢ D'(A), 5 # 0

Proof Assume, without loss of generality, that h(x) = < in the
Froot J

. . 2 . .
linear case, and n(x) = x~ in the quadratic case.

ot
2
w
[14)
[§Y]
n

i
[14}
(%]
ct

t0 prove the theorem separately for the cases U bounced and U

semi-infinite.

Let U be bounded. Then

2
A = % 9_§ - % (¢' + f2 + hzj
dx
]r“-l-‘2 21 K o ~® & - 1t ] A
and LT Ef +h~] s a bounded, <~ function on U, (Xecali

-
<

that (H} excludes the case in which ' + 7 may have a singu.arity

(D

-

iD
3
ot
o
1]
fol
S
u
¢
2
3
ot
3
3%
O
-
~

in U. A standard calculation fTreom 2:i-°7
(Coddington and Levinson [ 31)shows that A s seif-adjoint on
D(A) and -A 1s bounded belcw. Further, the theory cf sel<-ac

differential operazors on zcunded

)

N Ry y 12 ) - " -4
ntervars Imgitas thet 2 rn -,

. - -~ . . . - . = o yr
has a discreta spectrum A, s.t.y >t . Tim », irc
' ! 1 ! i |

= -
'

— ¢ ®m 3Ing 3 CIrvesIcncing ICmc.2te 2T 7 Jriniio

3
(o]
[A¥)
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vectors {vn}n=0' (Coddington and Levinson {3 7). IF

'_
—~
cZ|

©
“

(v)]a(y)ay (5.72,

(Coddington and Levinson [8 ]). One now proves (ii) case by case.

2 and ' + f2 = - h2 + ax2 +

To illustrate we do the example h = x
The estimation algebra {A,h}LA is then spanned by <A,x7,x %;, I;

and nas commutation relations

2 _ .o d .
(A, x°] = 2x = " 1

Sl=2a+2 8+

(A, x 3

From these, one readily derives

a: tn r 1, 1 - ; / = . r by e 2
; =7 wad Al'h = - [cosh 2/at - 1A + [cosh2vatix
“onl a -
n=0
+] L DR d . (+)
= (sinh 2vat)x o Ty
vYa
_ e ¢ , ¢
g(t) = sinn 2vat + 3 cosh 2vat - 57
gl
2va
Mow i23% us check 75.72) on n Obsarve firss that
A . t
ey = a2
1 n

P - TR LI -5 1. st viamd Nl S0

c.




and ,a(ri) # 0. {Ctherwise ,q[rfl = g, ,;fr;f = 7 weuid ‘mply
vn = Q) Tnus
x tn
(2 T (ad Al Th)e vn’:J(:
n=0 1
L+
A
n -1 o ; e aa
= @ a /2(s1nn 2va tix ’$(X) 5,73}
=1, 2. no,
+ («1a (cos 2:a t-1)+g{t)*x"cosh2va tle Y 1
1
This will not satisfy the boundary cocnditions :(ri/ =04 =2,] +
+ 1
because o0F the QS(X) term. Thus {5.73) cannot equa: e “h. since
\ 7 tA. \ ~ -~ A LIPS ,\ L\! N\
by (5.72), (e nu)(ri, = 3,1 = 0,1 low let wix) = ;o v, N ]
n=1
Then
© N
And t ~n Y tA ',
(7 =t ladAn) e o 'r.p =01 =0, |
n;o n. =~ 1 :
only it
N it
Soox.e” =0,
=0 -
(see 5.73). Since the kj are unequal this cannot hacpen unless '
3 = Q, j=1,---,n. The statement analogcus to (ii} with n replaced
d . . - . .. o
by 2x X 15 2is3 true. The nther cases ‘nvoiviag bounced U are

oroved in the same manner,

"
s
3
-
ot
[

12
(%)
pS
v
v

\ T 4. ' - t
ICW .27 - = \ﬁnv‘n/) s




case c2n only cccur if F' o+ 22

2
=ax” +b5x+c¢c and a >0 at the

very least. Hences the operator A s of the form

2

1d_l
2 442

2 -
[xz + ax" + bx + ¢c]

o 1r 2.2, . . s . . .
and lim TEX +ax“+tbx+c) = ». It is then known that A is self-adioint
xﬂ 7
on D(AY = {2'A » = L7(U),u(rs) = 0 with a2 strictly decreasin
; 0 S
sequencs 97 2igenvaluyes \j‘ The analysis then proceeds exactly as
Yor the abscrbed 3rownian motion case. (Indeed by a transformation

(&)

z = vx + 3, 9'(t) = ay(t), (5.58) with boundary condition gq{0,t) =
becomes the Zakai equation for absorbed Srownian motion). The proof

for the case U = (-w,r]) r. <=, is the same.

Remarks

4

(i) Theorem 3.9 implies that the crucial lie algebra identizy {(
of section 5.1 fails, and nhence that the method (5.70) of solving
(5.68) will not work. The result is that, exclusive of ne cases nc:
satisfying the assumptions (H) the Lie algebra technique waorks only

for the case treated by Bene3 1in which ¢ s a global soiution ot
o+ f2 = ax2 + bx + ¢.

(ii) The cne ncn-rigorous foint in the atove zalculaticn was trne

3
H
h
[¥s)

n
[®)
3

derivation of Zakai's ascuaticn. However, the 2cua%ic

C x,tj can Se rigersusiy derived, 17 <re 23 zrzntizcilicy 3f 1o, t
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o .
is assumed. Indeed if (2,F,P) 1is a probability space cn wnhich
3(t) and y(t] are independent 3rownian moticns; it can be snhcwn 3y

change of measure techniques that

t t

where t = inf{tij+B(s) ¢ US and r(x,t, 1is the densi*ty of

B(t) + Xq (Liptser and Shiryayev [28]). The techniques of Zakai

(477 applied to this object yield (5.53),and the boundary conditicns
q(ri,t) = 0 at finite boundaries r, are clear. The details will

not be presented.

It is in trying to justity Zakai's equation rigorcusiy that
the singularity ———5———, at X, = 2/2: causes troubie and is wny we
(2ax+z)”

excluded the cass Trom the anaiysis of theoram 5.5. HNeverthaless, i7
one presumes Zakai's equation holds and appiies the methcd oF theoram
5.5 with careful attention to what nappens at g the same 2onclusion

A will follow.

t
about e
{ii7) From the remark on page /9 , the anmaivsis o° theorem 3.5 car

5e azplied to the case when any cre of the boundarizs ‘3 rejulzs zn

i - -~ = = N ] R - N N
SV Tn o tneorsm .3, 13 in tre 3058rnad 3rtwntin totion 23

: - iz -~ -y R iane - - - P
sectiarn 2, F DI 5 invarignt Lnzes 1 ac: o T ~e
contain in invariant set 37 zinatutic Leltir: e 1o3mzoq

4"""""""""llllIlllllIllIlllll!lllllIllllllllllll!lnnulnggggg.=.===:,,,"




In our analysis of Lie algebraic zescnniaues we.excludes 3 .

@]
b}

number cossible, finite dimensicral exampies zy resiriciing cur-
selves to problems satisfying nypothesis (H,. =However, remarks i) -
(iv) state that the rasults of thegrem 5.5 are true, at least by
formal arguments, for any excluced case for which the conditionai
distribution can be found by solving Zakai's eguation for with
(possible) boundary cconditions. Thus, we conjecture that no cotner

v . - - . ;
examples beyond those of B8enes can, in fact, be sclved by “ne methoc

developed in this chapter.
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APPENDIX 1 HCMCGENESUS CHACS THECRY

Wiener's homogeneous chaos theory providssa method oF reore-
senting functions of Gaussian processes by certain infinite expansions,
the terms of which are the prototypes of multipie stochastic integrals.
This appendix presents the fundamental motions of the theory; the

treatment follows that of Kalifanpur [21 1.

The situation is as foilows. Let T be a separable
topological space. {x{t)!t = T} will denote a mean zerc Caussian pro-
cess cn T with a covariance function cl{t,s) = Ex{t)x{s) that is
jointly continucus in ¢t and s. Let the grcbability space of the
orocess be (2, F, P) and let A = zix{s)|s ¢ T;. Homogenecus chacs
theory concarns jtsalf with the siructure of LZ(:,A,?) considersd 3s
a Hilbert space with inner product <3,u> = €0y,1. It seeks o builc

. . . 2
a useful arthonormal basis for L°(2,A,P).

We present tne basic construction. Let

N
H=Span £ 7 a.x(t.)lt. T, N <=}
& 7 irer
1
. Co ; C .2, . .
( ceno*tas closure in <he norm ¢f L™(,A,P, ). 4 13 the subspacs
2/_ \ s P T - - - N [N o -
nf L7{L,A,P) consisting o7 linear functionais a7 <« -, = 3
sanarapl2, Secausa oF The separabitity of Toang tne fonTiaunitg oF
3 i . - - b
2l=,5), anc nenca 2 ha3z 2 Zounizalz crttoroming: zastis g




1)
-—
~3
wn

1)

cefinision AT
. - Y - . -~ PN
i Pn z {zolynomials of order < n in Zhe variadbias 73.:
B
i) ? =UypP
n
n
Y - . -~ - .,
111 s =7 & 7 = z P_i:i—
/ n n & M t2 2 P n-1
3
_— - 1} . :;7.; B - -V it
G is calied the n”" homogeneous chascs of xft)'t ¢ T:

=-}

Evicently, 7 = C E;
n=0
—
u

sum of Hilbert spaces. Ths thus give 2 Gram-Schmid: <y
decomposition ¢f P,  To provide orthoncrmal fases far *he G,

introduce the Hermit2 polynomials, which, 35 i% wiil 52 seen ars

i

naturaliy asscciatad to Zaussian orocesses.

PO . _ o - . . .
Cefiniticn A, 1.2 ne n Aermits poiynemial is da2fined as
2 2

, 0t xf2 & Xz

nq(x) = e =, ¢

' Vn! dx
Thearam 211 [HmCQ 2necus zhaos sxzansian)
Far avary n

A A8
o Lot r_ /- : - - Vo - - ==
[ v, = A - R - 3 b i o= ,.- 3

“:.-..1"" “‘. : ~ r .

A IS VRS- S SR

, in wnich & denctas z direcs




is an orthonormal sasis of E;

ii) 7 is dense in LZ(D,A,P). Thus

LZ(Q,A,P)

ENORN
n=0

n

and if 5 e L2(2,A,P)

33
"
He~3 8
~1
~—~
hid
-
~—
c)
—
-

n
{m'( )"')mr:;\‘l 3"'1\]_,,' €

7 )
M )

In = tmT’...'mr’AT’..'\r }m7+...+mr=n, m1>0’ k1,...,;r ;airﬁige

unecual :
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APPENDIX 2. SOME CONCEZPTS FRCM CPERATOR THICRY

The definitions and treorems Foilow Reed and Simeon [41,32 ;.

Let A and 8 be linear operators on dense domains D
and D' respectively in a (complex) Hilbert space ®. Let (-,-) denote

the inner product in H.

Qefinition A.2.1

(1) A is closed if its graphn {<s,Re>'3 is a closed

“i
(0]

subset oF H x H w.r.t. the norm {l<o,u>(i = [loli D u
(2) B extends A if DC D' and Be = Az, o ¢ 0.
(3) AID 1is the smallest closed extension of A, assuming
a closed extension exists.

[ -

(4) Spectrum of A = ofA) = T - 73 ilI-A bijects O onto =

Jefinition A.2.2

(1) D(A*) = 715 = H

(W)
-
W
ct
—
1>
<
-

Jre

Li)

For 5 = D(A%), A*s = 2.
(2) A s symmetric iT (Av,:; = {v,rs) for all v,z = C.
(3) A is self-aajoint if A = A%, that is if A s

symmetric and O(A*) = O.

] 4 : - g P v~ H eal S adimin-
(4) A is essentially zei“-zdloint 17 4 0 g z2rt-ziionrt

Theorem 12,7 Scectral Tollren
Tar 4 selteaziciat, -l T, Trere 3: ez 1 Tromoire
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soundec 3crel functions on z{A) <%0 =ouncad linear operztors on =

such that

[o(f)

and if hn(x; - X

Tim 3

No<m
Example I[Ff -A

a(-A) (A=), &
spectral theorem

on H.

Definition A.2.3

b e D
f +N
nand ﬁT Ll
n=0 -’

!l has a positive radius o

% = of7]

-

pointwise, ’hn\x)i < ‘x. for all x and n.

(hn)y = Ay, ¥y = D.

is self-adjoint and bounded below {i.=.,
(-t)(-4)_ e;A -

LS
X
> == e = ‘)

3(e is well defined by

for t > 0. One can show it is a bounded semigrouf

is an analytic vector for A if 27+ z T for ald

1)
(8]
O
3
<
D
3
ud
48]
3
O
4%

Theorem 1.2.2 (Nelson [28]).

Suppose

that A s symmetric and £ is invariant uncer

and ccntains a dense set of analytic vectors. Then A s essential

self-adjsint 2n

(@]

e R R

-

1

A

he
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Let G be a finite dimensional Lie algebra, and G its

associated simply connected group.

Theorem A.2.3 Let T(G) represent G by skew-symmetric operators

on a domain D of H, If there exists X e T(G) such that 1iX (on
D) is not essentially self-adjoint, then G has no unitary

representation on H. Further if X ',Xd is a basis of

.
T(G), x§+v--+x§ will not be essentially self-adjoint on D either.

For the noticn cf representation in this theorem see definition 5.1

in chapter 5.







